

CRRC Nanjing Puzhen Co., Ltd.

CONTENT

Mission

Connecting the world through better mobility

A high-quality product portfolio to help achieve global ESG goals

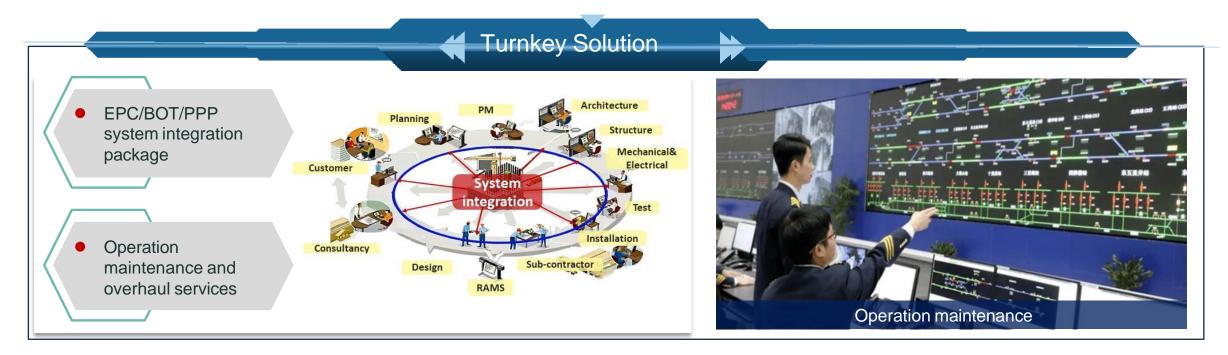
170,000+ CRRC Group Employees

46Subsidiaries

37 billion USD Revenue in 2022

385
Ranking at Fortune
Global 500 List, 2022

- Employees 10000+
- Annual capacity: 2,000+ passenger coaches and EMUs
- 2,500 metro vehicles
- 550 medium and low capacity vehicles



Full Range of Railway Products

R&D of Digital-rail Rapid Transit

Digital-rail Rapid Transit, or DRT, is a reliable mass transit system that operates on virtue digital tracks. Based on magnetic signals and supplemented by optical detection, satellite positioning, and inertial navigation correction technologies, virtue tracks of DRT function similarly as physical tracks, including bearing, guiding and restraining. By navigation information along the routes, DRT system realizes autonomous driving.

Advantages as a rail transit system

- Reliable solutions and interfaces
- Dedicated tracks
- Energy efficient, environmental friendly
- ATP/ATO

Advantages as a ground transit system

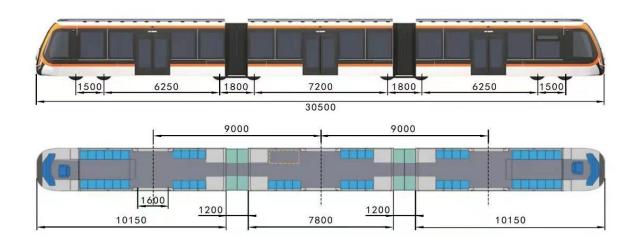
- Low construction cost
- ☐ Flexible route design
- ☐ Flexible stop arrangement

Technology innovation

- Virtue digital tracks
- Integrated navigation technologies onboard
- New technologies materials

Customer demands

- Geographical cultures
- Operation conditions, safety, and, cost
- System construction cost


DRT

- □ Smart rail transit system
- Low floor design, and intelligent navigation

Rated Capacity 6/m2, headway 1.5~3 mins, operation Speed is 18~25km/h:

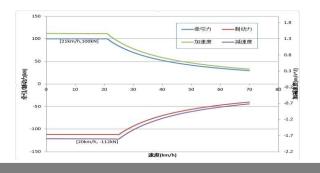
Formation	2 car	3 car	4 car
Length/m	21.5	30.5	39.5
Seating Capacity/Person (Flexible adjustment)	40	56	72
Rated Passenger Capacity/4 Person	120	179	248
Rated Passenger Capacity/6 Person	162	241	332
Overloaded Passenger Capacity/ 8 Person	202	302	416

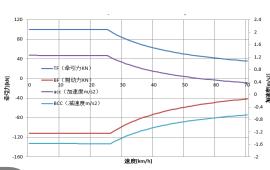
Passenger Capacity:

- √ 3-car configuration;
- ✓ Rated Capacity 6/m2
- ✓ Headway is 2.5 mins,
- ✓ Total capacity per direction per hour: 5784

Passenger Capacity

- √ 4-car configuration;
- ✓ Rated Capacity 6/m²
- ✓ Headway is 2.5 mins,
- ✓ Total capacity per direction per hour: :7968.





- ✓ Design Speed
- ✓ Average Acceleration (0-40km/h)
- ✓ Average Acceleration (0-70km/h)
- ✓ Average deceleration of service braking
- ✓ Average deceleration of safe braking

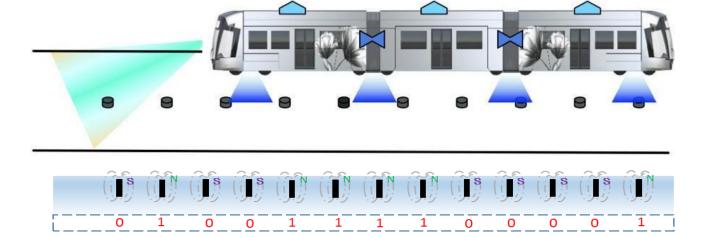
- ✓ 80km/h
- ✓ ≥1.0m/s²
- ✓ ≥0.7m/s²
- ✓ ≥1.1m/s²
- ✓ ≥1.0m/s²

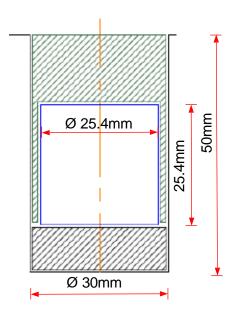
- ✓ Min lane width : 3.3m
- ✓ Max axle load : 7.5t
- ✓ Min turning radius : 15m
- ✓ Climbing performance : 150‰
- ✓ Power supply: Supercapacitor/hydrogen
- ✓ Capacity(6person/m2): 241
- ✓ Length (3 modules): 30.5
- ✓ Maximum width: 2.5m
- ✓ Maximum Height: 3.6m
- ✓ Floor Height: 320mm

Magnetic Nail

✓ Material: Permanent magnetic ferrite

✓ Installation interval 1m

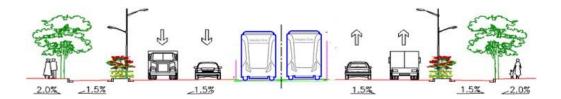

✓ Size: Diameter is 25.4mm


✓ Height is 25.4mm

✓ Installation hole: Diameter is 30mm

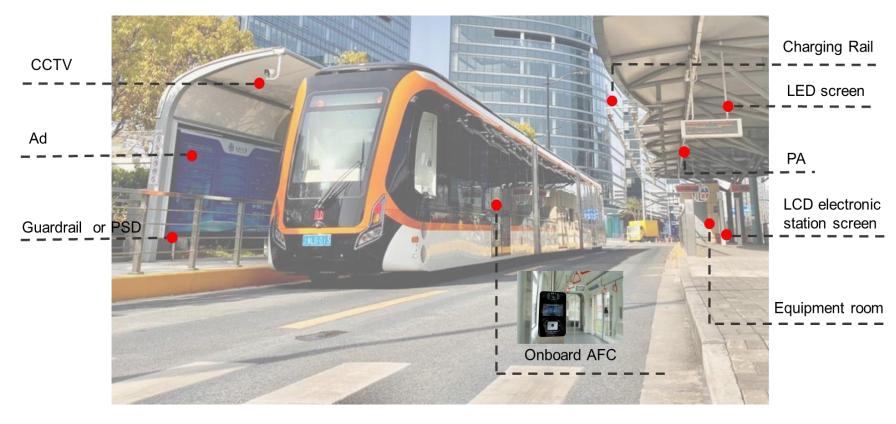
Height is 50mm, fill with glue

✓ Temperature : -60°C~180 °C



The magnetic nail is a reference unit for vehicle positioning, which is embedded in the road to measure the position of the vehicle, and the lateral deviation of the vehicle body and the road centerline can be determined, so as to control the movement of the vehicle in the direction of reducing the deviation to achieve the guidance function. In addition to the tracking and guidance function, the digital track also provides functions such as full positioning, safety protection, digital map, and electronic turnout.

◆ DRT runs in the middle of the road (Island Station)



Besides the city road (Side Station)

✓ Platform Height:

280mm

✓ Gap between station to trains:

≤150mm

✓ Island Station Width:

≥ 1.5m

✓ Station Area Road Width:

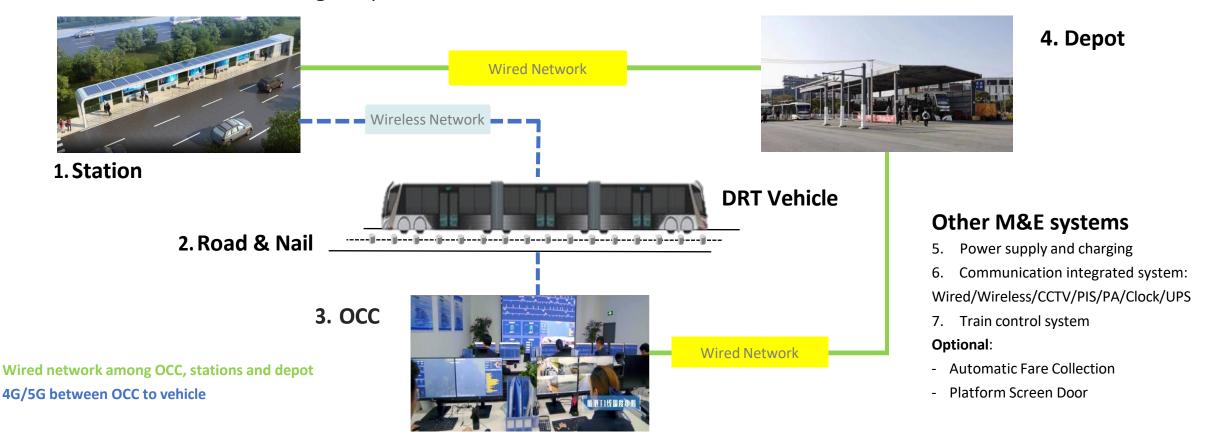
≥3.5m

✓ Side Station Width:

≥ 3m

✓ Equipment Room Space around:

1.5m*3.1m≈5m²



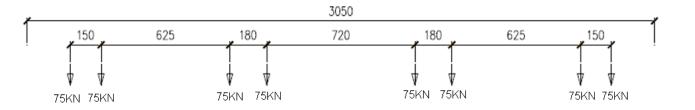
Part III DRT Solution

DRT Turnkey Solution

With rolling stock design & production and system integration as core competitiveness, DRT turnkey solution can be provided from consultancy, investment and financing, design, rolling stock manufacture, E&M equipment supply and installation, test & commissioning to operation & maintenance

Road & Magnetic Nail

1. Road Requirement


- ✓ Trunk road. The design resilience modulus value of the top surface of the roadbed≥40MPa
- ✓ Branch road. The design resilience modulus value of the top surface of the roadbed≥35MPa

2. Pavement Structure

- ✓ Cement Concrete Road (preferred)
- ✓ Asphalt road surface

3. Load Requirement

√ 7.5 t Ref. Trunk road defined by standard CJJ37 or similar standards

数轨(DRT)列车荷载计算图示(单位: cm, kN)

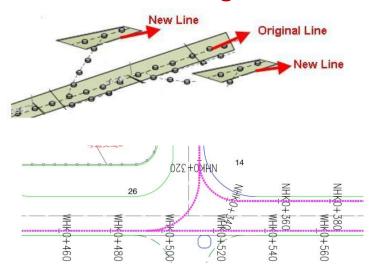
26cm C35 Cement concre	ete 26cm C35水泥混凝土	26cm C35水泥混凝土 20cm C30水泥混凝土 (双层钢筋网片)			
20cm C30 Cement concre (Double steel mesh)	20cm C30水泥混凝土(双层钢				
15cm Gravel sand	15cm 砾石砂	15cm 砾石砂			
Raw soil crushing	原土碾压	原土碾压			
Cement paste	水泥净菜				
	水泥净浆 原面层	_			
Cement paste Original surface layer Original base layer	2 4 2 2 4	_			

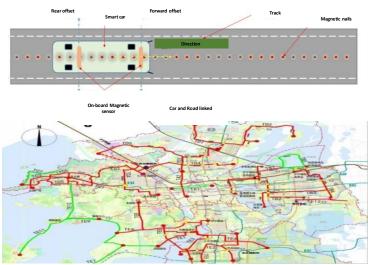
Part III DRT Solution

Road & Magnetic Nail

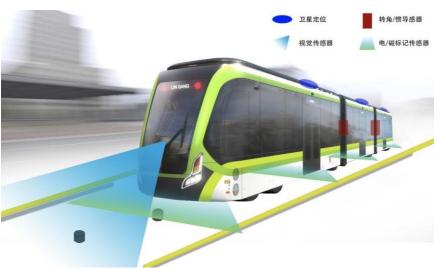
Digital track virtual guidance technology

✓ Magnetic nail + optical + satellite


✓ All wheels coordinated steering


Tracking and guiding Virtual turnout

Positioning and control Real time detection


Digital Map Safety protection

Autonomous driving level :GOA2 level or L3 level

- □ Operation Control Center :
- ✓ Include integrated display screen and personnel working station, the spare is around 90m².

The train operation control system is composed of automatic scheduling and vehicle monitoring system, with functions such as operation scheduling, driving monitoring, and fault monitoring

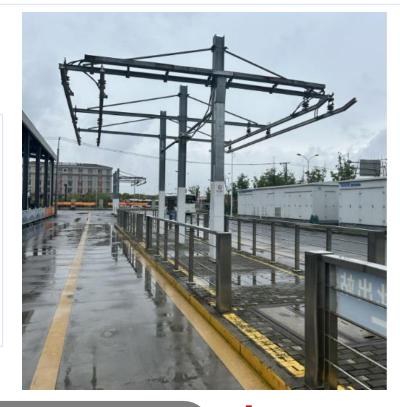
Main area:

- Parking area
- ✓ Routine Maintenance
- ✓ Corrective Maintenance
- ✓ Charging station
- ✓ Electrical substation
- ✓ Spare parts storage

Electrical Substation Space

• Size: 3.2*16.2m

• Land area: 5.2*18m


• Construction height: 1.65m

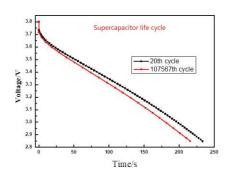
Capacity: 750V*1000A*2 sets

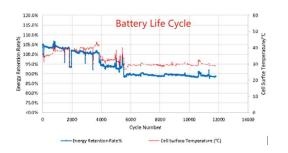
Main Equipment:

- Mobile lifting machines
- ✓ vehicle washing equipment vacuum cleaners
- ✓ tire dismantling equipment,
- ✓ wheel alignment
- ✓ forklifts, etc.

☐ Large-capacity lithium-ion supercapacitor

- ✓ Capacity: 130kWh (3 car)
- ✓ Charging time: Fully charged in 12 minutes
- ✓ Range: 30km
- ✓ Lifespan:10-year with little maintenance




Quick Charging: 750V(adjustable), 1000A

Slow Charging: 380V (adjustable), 250A/400A

Hydrogen fuel cell with auxiliary supercapacitor

- Capacity: 570kWh (3 car)
- ✓ Hydrogenation time: Fully fill up in 12 minutes.
- ✓ Range: 150km
- ✓ Lifespan:5-year with little maintenance
- ✓ Super capacitor is used as an auxiliary power source, 15km can be achieved in the event of hydrogen fuel cell failure.

Assuming the use of fast charge, the line length is 6km, and the terminal station can be charged for 1.5 minutes:

Energy consumption for one trip: 4kwh/km*6km=24kwh

Terminal station recharge:12kwh/min*1.5=18kwh

Remaining capacity of the capacitor after charging:130kwh-24kwh+18kwh=124kwh

Part III DRT Solution

DRT vs Trams &BRT Technical Parameters

ITEM	LRT(5-Module)	DRT(4-Module)	BRT(2-Module)
Driving control	Bi-direction	Bi-direction	One direction
Car length	32.6m	39.5m	18m
Car width	2650mm	2500mm	2500mm
Axle load at- full load	12.5ton	7.5ton	7ton
Maxi Passenger capacity(6/m2)	300	332	150
Min turning radius	25m	15m	24m
Floor Structure	low floor	low floor	low floor
Acceleration	≥1m/s²	≥1m/s²	Each product is different
Average safe brake deceleration	≥1.5m/s²	≥1.1 m/s2	Each product is different
Emergency brake equivalent deceleration	≥2.8m/s²	≥2.0 m/s2	Each product is different

Part III DRT Solution

Experience

Shanghai Lingang T1

- ✓ 18th,AUG,2020, the world's first DRT independently developed by CRRC.
- ✓ 1th,JAN,2021, trial operation.
- \checkmark 30th, JUN,2021, officially operation.

T1 Route length 21.7km

T1 Stations 20

Departure interval(adjustable) 8-20 minutes

Super Capacitor-powered 30 km

Shanghai Projects

- Operation in October 2022
 Shanghai Lingang Line T2
 Hydrogen energy
- 5 trainsets with 3 cars formation
- Depot at Huabai Road. Hydrogen refueling station at depot

T2 Route length 8.7km

T2 Stations 8

Departure interval(adjustable) 15-25minites

Hydrogen-powered 150 km

Transferable available with line 16

Shanghai Projects

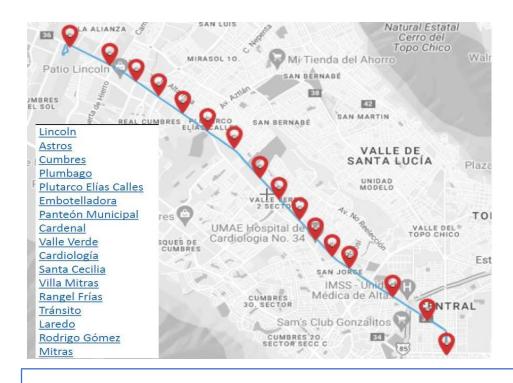
- Hydrogen energyShanghai Lingang Line T6
- ✓ 7 trainsets with 3 cars formation
- Depot at Huabai Road. Hydrogen refueling station at depot

T6 Route Map

T6 Route length 10.6km

T6 Stations 5

Departure interval(adjustable) 15-25minites


Hydrogen-powered 150 km

Transferable available with T1

Demonstration Line in Monterey

- ✓ Mixed operation with the existing BRT fleet
- ✓ Operation at Feb 2024
- Main line uses manual driving to demonstrate the vehicle to the public.
- Operation by CEMEX
- Demonstration period: 1 year.

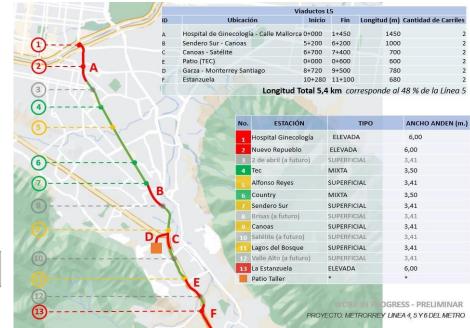
Demo Line Route length 11.5km

Stations 17

Departure interval(adjustable) 5 minutes

Super Capacitor-powered 30 km

Transferable available with Metro L1


Part I DRT Solution

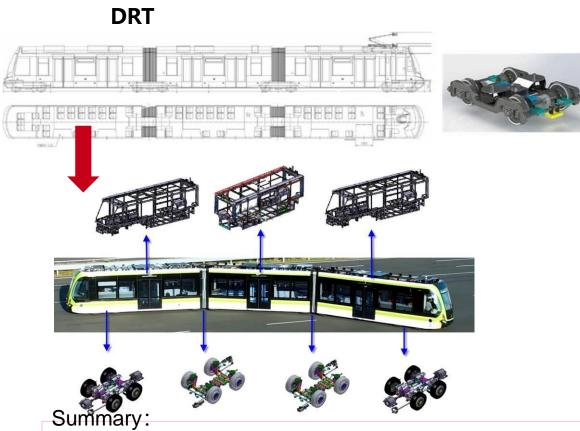
Experience

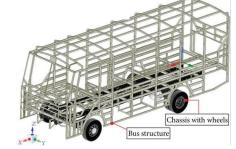
Mexico Line 5

- ✓ Turnkey Project include design, construction, E&M, Vehicle;
- Consortium with local partner
- Operation by Metro Monterrey
- ✓ Operation in 2026

L5 Route length	11km
Stations	13
Departure interval(adjustable)	10-30 minutes
Super Capacitor-powered	30 km
Transferable available	with L4&L6

THANK YOU




www.crrcgc.cc

Structure

- ✓ DRT was developed on the basis of trams(VLT), using rail transit standards.
- ✓ BRT uses regular buses, or articulated buses that extend from regular buses, using road vehicle standards.
- ✓ The rail transit standards requires that the design life of railway vehicles is not less than 30 years.

DRT Use life-30 years

1.Railway Standard and contract requirements

Components	Standards	Clause	Requirement
Bogie	Bogie UIC 515-4 6.1		The number of fatigue test cycles has been chosen to allowglobal simulation of a 30-year service life,based on 200.000 km/year.
Electrical components	EN 50155		The useful life of the electronic equipment shall be specified according to one of the following classes:L4-20years (Unless otherwise specified, the life class L4 applies)
Vehicle	GB50157	1 /1 < /1	The design life of the vehicle structure shall not be less than 30 years

2.4.7 Duty Cycle and Useful Life

2.4.7.1 The annual mileage of the fleet is 2,550 car-kkm

2.4.7.2 Operation

- 20 hours per day for not less than 30 consecutive days without any maintenance, but only visual inspection at weekly intervals.
- The useful life of the vehicle under an adequate maintenance regime as defined in the O&M manuals to be provided by the Contractor shall not be less than 40 years except for the LRV interior finishing where a minimum 20 years design life is required.

3. Test


Every project will test according to the standards and contract

The carbody structure design and type test results: static results: static policial test, component crash tests and the results: static policial test, demonstrated and enforced and enforced and enforced test of the Phase 5 LRV were reviewed and enforced and enforced test of the Phase 5 LRV is structural interest and interest policial test of the Phase 5 LRV is structural interesting the static policial test of the Phase 5 LRV is structural interest by the test of the Phase 5 LRV is structural interest by the Phase 5 LRV is structural interest.

Assessment Summar

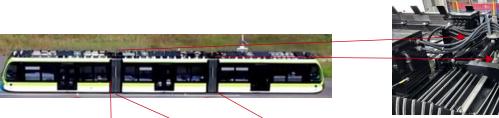
Requirement	Compliance Status		
PS K1846-15E	compliant		
EN 12663	compliant		
EN 15227	compliant		
Static Proof Load Test	compliant		
Mainline Dynamic Test	compliant		

Serial No.	Ambient temperature at the outer surface of the insulation layer /*C	Hours	Life-time/years (Remark:19 hours per day)	
1	30	1080226	156	
2	40	555394	80	
3	50	297562	43	

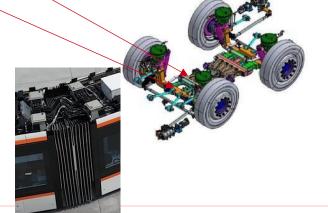
2.Method

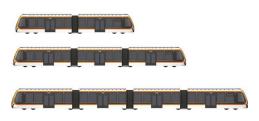
- Use metal material as much as possible.
- ✓ Use industrial quality of electrical components
- ✓ Reserve a higher safety factor
- ✓ Follow the standards requirements ,the parameter defined in standards already consider the 30 years life.(Such as BS 7608, Fatigue strength curve (S-N curve)

4. Existing project experience proof

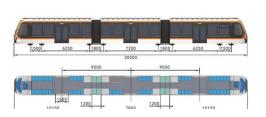

- ✓ Shanghai Metro Line 1 :1992-2023.
- ✓ MTR, M train:1994~till now
- ✓ MTR, light rail ,1988~till now.

Segments Connection

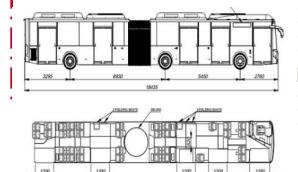

DRT



- ✓ The articulated technology used in DRT can avoid "up-and-down" movement of the vehicle and improve comfort.
- ✓ The DRT has shorter gangway length, allowing more space for passengers.



Passenger capacity


DRT

Formation	2 car	3 car	4 car	
Length/m	21.5	30.5	39.5	
Seating Capacity/Person (Flexible adjustment)	40	56	72	
Rated Passenger Capacity/4 Person	120 179		248	
Rated Passenger Capacity/6 Person	162	241	332	
Overloaded Passenger Capacity/ 8 Person	202	302	416	

BRT

Body type	Length [m]	Max. payload [t]	Max. no.	
12 m single-deck	12	7.9	115	
18 m articulated	18-18.75	10.7	156	
25 m bi-articulated	24.8	13.7	200	
2-axle double-deck	10.5-12	7.0	101	
3-axle double-deck	12-13.7	8.7	126	

Diesel BRT

Dimensions and weights						
Model	12.0 m	18.7 m				
Length (m)	12.00	17.85	18.55			
Width (m)	2.55	2.55	2.55			
Height (m)	3.30	3.32	3.32			
Permitted GVW (kg)	19,500	29,000	29,000			
Passenger capacity						
Model	12.0 m	18.0 m	18.7 m			
No. of passengers, max	95	150	145			
No. of seats, max	38+1	49+1	53+1			


Electrical BRT

- ✓ DRT has a higher passenger capacity than BRT
- ✓ DRT requires fewer drivers than BRT
- ✓ For the same passenger flow, DRT can be equipped with fewer vehicles than BRT.

Saloon Layout

DRT

BRT

More steps in saloon, Max 200 person(25m)

Flat floor, Max 332 person(4 car, 6 person per m²)

- The saloon area of the DRT is more spacious and wheelchairs can easily pass through each car.
- > There are many steps in the saloon of BRT, which affect the flow of passengers
- DRT have higher space utilization.

Part3.2 Compare with Design Proposal

Cab Layout

DRT

BRT

Summary

> DRT equipped wtih "Train control and management system", which has Driving assistance, Fault record, Intelligent diagnosis, Maintenance assistance function.

Axle Load

DRT

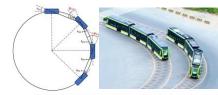
BRT

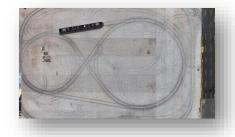
Body type	Length [m]	Max. payload [t]	Max. no. passengers
12 m single-deck	12	7.9	115
18 m articulated	18-18.75	10.7	156
25 m bi-articulated	24.8	13.7	200
2-axle double-deck	10.5-12	7.0	101
3-axle double-deck	12-13.7	8.7	126

Max Axle load: 13.7 ton

Max Axle load: 7.5 ton

- ✓ DRT has lower axle load than BRT
- ✓ DRT has less impact on the road


Front-wheel steering


Steering

DRT

	AXLE 1	AXLE 2	AXLE 3	AXLE 4	AXLE 5	AXLE 6	AXLE 7	AXLE 8
POWER	Motor (driven)	Motor (driven)					Motor (driven)	Motor (driven
Steer	Active - Steerable	Steerable via link to Axle 1	Active Steerable		Steerable via link to Axle 8	Active - Steerable		

BRT

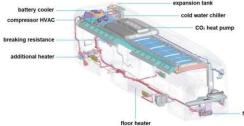
Min turning radius: 15m

All-wheel steering

- DRT adopts all-wheel steering, so the turning radius can achieve R15,
- BRT adopts front wheel steering mode, the longer the vehicle, the larger the sweeping space of the vehicle
- ✓ DRT can be controlled more precisely and take up less space when using magnetic nail guidance

Equipment

DRT



- ✓ DRT follow railway design requirement, use redundancy design, the number of equipment is much higher than BRT.
- ✓ The DRT is equipped with more intelligent systems, and the whole vehicle has more than 8,000 cables, used to manage and control vehicles

Performance

DRT

	<u> </u>	
•	Type of Motor	Permanent magnet motor
•	Nominal Power	120kw*4=480kw
•	Maximum Power	180kw*4=720kw(Under Traction) 220kw*4=880kw(Under Brake)
•	Start torque	7600Nm
•	Maximum gradient	15%
•	Maximum axle load	7,500kg

	BK
	D8K350
7	Euro 6

Engine	Dokoou
Emission standard	Euro 6
Engine system	EGR, Common Rail
Displacement (dm³)	7.7
Cylinders/arrangement	6/in-line
Output (hp)	350
Output ISO 1585 (kW)	258
Torque ISO 1585 (Nm)	1,400
at engine speed (rpm)	1,200-1,600

Engine

Diesel BRT

Driveline				
Electric motor, output max (kW)	200	2×200	2×200	Electrical BRT
Max wheel torque (Nm)	19,000	31,000	31,000	

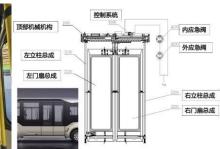
Summary

- ✓ The DRT has more traction capacity and can still achieve 15% of the climb capacity.
- ✓ The DRT will priority use regenerative braking, which is more energy efficient.

Door System

Туре	Plug in sliding door
Number	6(both side)
Size	1600(width)*1900(height)
Main	Obstacles detection/remote maintenance/
Function	Door open and close indication/safety lock/bypass

BRT



• Type	Folding door
 Number 	3~4
• Size	1300(width)*1900(height)
Main Function	Open and close

- ✓ The DRT sliding door has a better appearance and does not occupy the door entrance space.
- ✓ The larger size of the DRT door allows passengers to quickly get on and off the train.

ACV system

DRT

 Air Condition 	oning
-----------------------------------	-------

• (3 in total, 1 for each car)

Cooling Capacity:3*29kw

Heat:3*22kw

Air Flow:3*3500m3/h

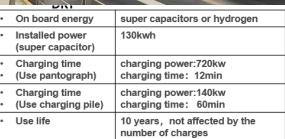
Fresh Air:3*850m3/h

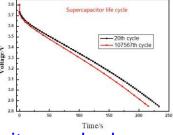
Summary

- ✓ The DRT is equipped with more powerful air conditioning.
- ✓ DRT air conditioning with fresh air function, can make passengers feel more comfortable.
- ✓ DRT air conditioning can be self-diagnosed, easy to maintain, and can be controlled centrally or separately.

BRT

Climate system				
Model	12.0 m	18.0 m	18.7 m	
Cooling capacity Roof unit, max (kW) - optional separate	25	2×25	2×25	
driver AC (kW)	5.5	-	-	
Heating capacity Roof unit				
- heating pump (kW) - electric heater (kW)	16 40	2×16 2×40	2×16 2×40	




Onboard Energy

DRT

Suggest to use supercapacitors or hydrogen Also can use battery

BRT

BRTS basically use lithium iron phosphate, which has a short life and a long charging time

Summary:

- ✓ DRT use supercapacitor, can quick charging at terminal station
- ✓ BRTS basically use lithium iron phosphate, which has a short life and a long charging time
- ✓ Supercapacitors have higher safety and longer life than lithium iron phosphate

Passenger Information System

Summary:

- ✓ The DRT is equipped with a variety of passenger information system devices, including video and audio
- DRT can realize automatic broadcast arrived station names
- Routes and stops can be set by the OCC or by the driver

Driver Assistant

DRT

Laser radar

Binocular vision

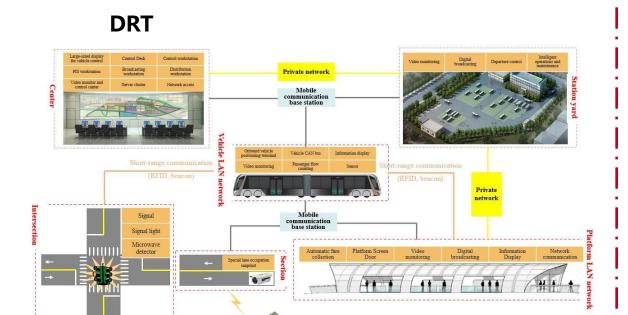
Millimeter wave radar

Ultrasonic radar

360 panoramic camera

BRT

Rear-view camera


Ultrasonic radar

Summary:

- DRT is equipped with an advanced automatic obstacle detection device
- ✓ DRT enables automatic GOA2 or L3 level autonomous driving in the case of magnetic nail guidance
- ✓ DRT is equipped with more driving assistance devices, which can also help the driver better drive the vehicle in the case of manual driving

Operation

BRT

BRTS operation & administration

Operational requirements of BRTS

- BRT Infrastructure (Running Ways)
- BRT stations & platforms
- BRT vehicle fleet
- BRT ITS
- BRT integration
- BRT fare
- · BRT marketing and branding
- BRT Infrastructure supporting facilities
- BRT fleet supporting facilities and services

Administration requirements of BRT

- BRT Infrastructure providers (public, private)
- BRT operators
- BRT planning and regulator agency
- BRT services and operational plan

Summary:

✓ DRT use rail transit concept, and more automated ways are used to manage the operation.

Standard

DRT

• F	ire Standard	EN 45545
• S	afety regulation	EN 12663 P-V, EN 15227
• N	OISE	ISO 3095, ISO 3381 , <75dB(A)
• D	river cab	UIC 651
• E	MC	EN 50121
• н	olding brake	EN 13452
• D	riving assistance	TCMS, 360 panoramic view, Lidar, binocular vision

BRT

SECURITY AND REGULATION

Compliance with fire-resistance: Compliance safety regulation: AVAS(Acoustic Vehicle Alerting System) integrated according to:

Compliance with:

Driver are in accordance with: Electromagnetic compatibility: Creepage and Hillholder function:

EcoAssist: Eco-mode:

Regulation 118R, annex 6,7 and 8 With ECE-R66/02

R138 regulation Standard ITxPT

ISO16121, VDV234 and EBSF

Regulation 10R

1

Efficient assisted driving

Intelligent management of air conditioning once the vehicle is

switched off

Summary

- > DRT is designed using railway standards and is more stringent.
- ➤ The DRT has more driving assistance functions and can achieve a certain degree of autonomous driving
- DRT consider both structure safety and crash safety. The front end of the DRT is equipped with an energy absorption area, which can better protect the driver and passengers. The structural strength of BRT is only related to rollover, not longitudinal compression and fatigue strength. The collision performance of BRT vehicles is lower than the requirements of rail transit standards, and drivers and passengers are more likely to be injured after vehicle collision.

Design Concept

DRT design based on rail transit concept

> RAIL

Magnetic markers are used to form a virtual track to control the vehicle on its route, making it safe, fast and comfortable;

> Smart

Automatic and intelligent driving, real-time positioning, coordination between OCC and vehicles; Redundant design, high reliability, operations not affected by a single failure;

Bi-direction driving

Door opening on both sides, two cabs allow bi-direction driving, making it more convenient for road and platform design;

> Flexible adjustable

Adjustable car formations, without affecting the turning radius and space;

➤ Long life cycle, designed with a 30-year service life.

BRT Design based on bus concept

> Share the Road

Using common roads or dedicated routes, it relies on the driver to observe the road surface, and the riding comfort also depends on the driver's driving skills;

- Manual driving by drivers;
- Redundancy not considered, directly withdrawn from operation in case of power or braking failure;
- One-direction driving, door opening on one side, platforms designed on the same side;
- ➤ Double articulation at most. The longer the car, the larger the turning radius, and the more severe the tail sways;
- ➤ Short service life, usually 8 to 10 years.

Design Concept

DRT design based on rail transit concept

Customized product

Every project will be designed according to each customer's needs and its service environment;

Standard compliance

Compliance with both rail transit and road vehicle standards. More stringent requirements for design and manufacturing;

➤ A variety of qualifications and certifications

Rail transit standards: EN 12663, EN 45545, EN 50121, EN 50126,

EN 50128, EN 15085, DIN 6701, etc.;

Road traffic standards: NOM-012-SCT-2 and other NOM standards,

NMX standards, UNECE or FMVSS standards and directives;

Available certifications: ECE, NOW, etc.

BRT Design based on bus concept

Mass production

A product of mass production, and usually only a fixed number of models are available for customers to choose from;

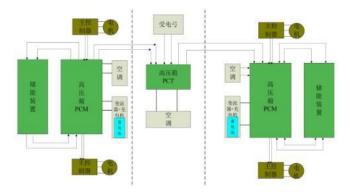
Standard compliance

Only road vehicle standards are followed;

Qualifications and certifications

only provide relevant testing and certification of the automobile industry;

Road traffic standards: NOM-012-SCT-2 and other NOM standards, NMX standards, UNECE or FMVSS standards and directives, but the standard requirements are far lower than those of rail transit;


Take fire protection as an example, only the combustion properties of interior materials are required according to UL or FMVSS, whereas EN 45545 not only has requirements for materials, but also for the vehicle structure, fire prevention, firefighting, evacuation and other aspects in detail.

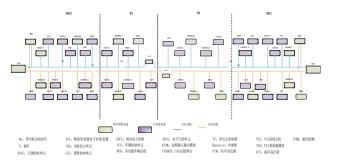
Safety design

DRT

- All critical system designed redundancy.
- > Vehicle will automatic brake under below condition:
- Train overspeed
- Change of normal operation route
- Door not closed properly or opened
- Driving direction changed
- Invaild brake command
- The vehicle trajectory is severely deviated
- The line magnetic nail signal is continuously lost
- Rubber tires have safety wheels inside
- Brake system has major failure
- Multiple braking method,
- Brake pedal
- Mushroom button
- Emergency communication Device
- Brake and traction interlock.
- Normal lighting and emergency lighting
- Obstacle detection

BRT

- Do not consider redundancy
- Brake controlled by driver.
- Only Rubber tire
- Only lighting,



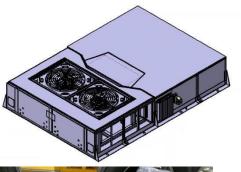
Smart Design

DRT

- ➤ All critical system designed redundancy.
- Autonomous driving based on magnetic nails;
- ➤ Virtual rail:
- Digital map;
- ➤ Body attitude correction (Angle sensor, inertial navigation)
- Obstacle detection
- Dynamic route maps
- Automatic station announcement
- ➤ Bi-direction driving

BRT

Brake controlled by driver



Comfort Design

DRT

- ➤ Air condition has fresh air(Reduce CO2 concentration
- > Jerk limit
- Low floor
- Broad vision
- Door with big open width

BRT

No fresh air ,only cooling and heating.

Part I DRT Solution

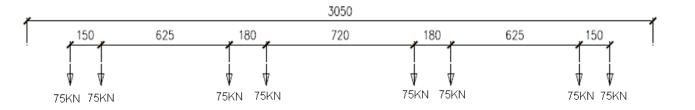
DRT vs Trams &BRT Technical Parameters

DRT vs Trams&BRT

ITEM	LRT(5-Module)	DRT(4-Module)	BRT(2-Module)
Driving control	Bi-direction	Bi-direction	One direction
Car length	32.6m	39.5m	18m
Car width	2650mm	2500mm	2500mm
Axle load at- full load	12.5ton	7.5ton	7ton
Maxi Passenger capacity(6/m2)	300	332	150
Min turning radius	25m	15m	12~24m
Floor Stucture	low floor	low floor	low floor
Acceleration	≥1m/s²	≥1m/s²	Each product is different
Average safe brake deceleration	≥1.5m/s²	≥1.1 m/s2	Each product is different
Emergency brake equivalent deceleration	≥2.8m/s²	≥2.0 m/s2	Each product is different

Part I DRT Solution

1. Road Requirement


- ✓ Trunk road. The design resilience modulus value of the top surface of the roadbed≥40MPa
- ✓ Branch road. The design resilience modulus value of the top surface of the roadbed≥35MPa

2. Pavement Structure

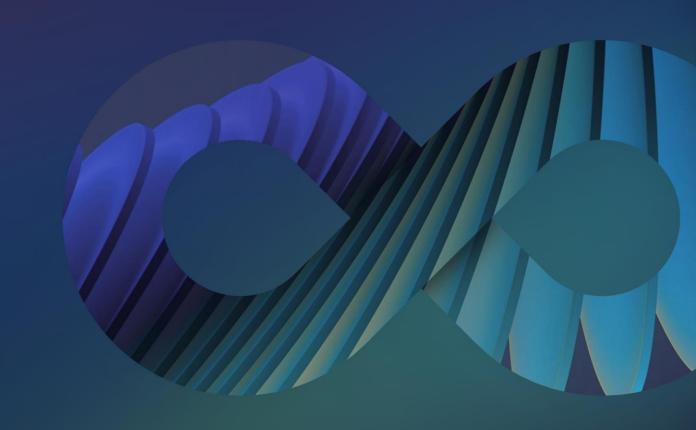
- ✓ Cement Concrete Road (preferred)
- ✓ Asphalt road surface

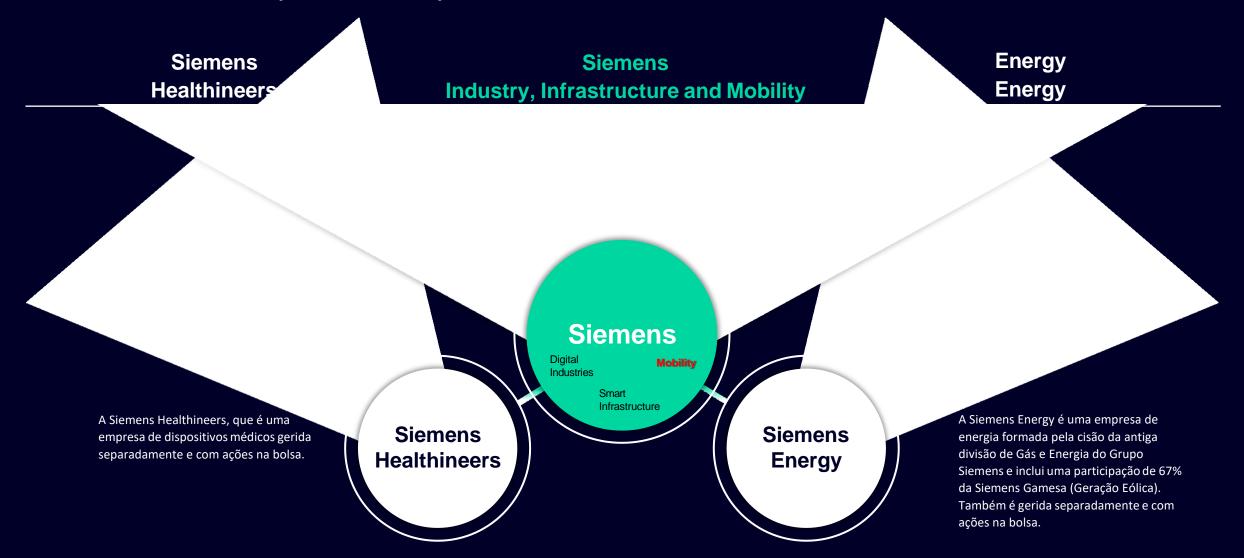

3. Load Requirement

 7.5 t Ref. Trunk road defined by standard CJJ37 or similar standards

数轨(DRT)列车荷载计算图示(单位: cm, kN)

26cm C35 Cement concret	e 26cm C35水泥混凝土
20cm C30 Cement concret (Double steel mesh)	te 20cm C30水泥混凝土 (双层钢筋网片)
15cm Gravel sand	15cm 砾石砂
Raw soil crushing	原土碾压
Cement paste	水泥净浆
	水泥净浆 原面层
Cement paste Original surface layer Original base layer	1 4 - 1 - 1




Reunião com A Geometrica

https://www.geometrica.com.br/

03 de abril de 2024

Com nossas soluções, estamos enfrentando os maiores desafios do nosso tempo ... Abaixo do nível de Grupo, haverá 3 empresas ...

Quem somos

SIEMENS

Digital Industries

Smart Infrastructure

Mobility

Siemens Healthineers

Siemens Energy

Somos a empresa de mobilidade mais diversificada e verticalmente integrada estruturada em cinco unidades de negócio

Rolling Stock

Material rodante de curta distância, regional e longa distância, soluções de produtos e sistemas para transporte de passageiros e carga

Rail Infrastructure

Produtos e soluções para automação ferroviária e eletrificação para Mainline, Carga e Passageiros

Customer Services

Serviços para material rodante e infraestrutura ferroviária, durante todo o ciclo de vida

Turnkey

Soluções ferroviárias completas integrando todo o portfólio ferroviário e além

Software

Soluções de software para planejamento de trens, inventário, reservas e emissão de passagens, mobilidade como serviço (MaaS)

Rolling Stock é um fornecedor global de material rodante e soluções de sistemas para transporte de passageiros e carga

High Speed and Intercity

Commuter, Regional and Passenger Coaches

Metros

Light Rail and Val

Components

Light Rail

Articulado ou multiarticulado, o que for mais adequado

Um passeio rápido como bonde ou trem leve

... até mesmo nas curvas mais apertadas

Single- or multi-articulated, whatever fits best

Avenio - Basic technical data:

- Single-articulation design: Modules of approx. 9 m length, each supported by one central bogie
- Vehicle length: 2 8 modules (18 m 72 m)
- Vehicle width: 2.3 m, 2.4 m, 2.65 m
- Entrance / Floor height: 300 / 350 mm (435 mm)
- Car body material: Steel, welded
- Gauge: 1435 mm
- Max. axle load: 10.5 t
- Max. speed: 80 km/h

Avenio M - Basic technical data:

- Multi-articulation design: Short bogie modules connected by hinged intermediate sections
- Vehicle length: 3 / 5 / 7 modules (21 m 43 m)
- Vehicle width: 2.3 m, 2.4 m, 2.65 m
- Entrance / Floor height: 300 mm (360 mm)
- Car body material: Aluminum, welded
- Gauge: 1000 mm, 1435 mm
- Max. axle load: 12.5 t
- Max. speed: 70 km/h

Single- or multi-articulated, whatever fits best

18 m 27 m 36 m 45 m 54 m

Number of passengers for different vehicle widths*:

2.30 m	2.40 m	2.65 m	
35 + 69 = 104	46 + 64 = 110	46 + 76 = 125	MD
24 + 79 = 103	36 + 73 = 109	36 + 86 = 122	BD
53 + 108 = 161	70 + 101 = 171	73 + 119 = 192	MD
42 + 118 = 160	50 + 122 = 172	52 + 140 = 192	BD
69 + 153 = 222	90 + 146 = 236	94 + 166 = 260	MD
52 + 170 = 222	72 + 164 = 236	72 + 192 = 264	BD
89 + 189 = 278	120 + 174 = 294	127 + 201 = 328	MD
68 + 211 = 279	96 + 200 = 296	96 + 235 = 331	BD
105 + 233 = 338	138 + 222 = 360	142 + 256 = 398	MD
80 + 260 = 340	112 + 250 = 362	112 + 292 = 404	BD
128 + 265 = 393	170 + 247 = 417	179 + 286 = 465	MD
104 + 292 = 396	144 + 276 = 420	144 + 326 = 470	BD
149 + 303 = 452	190 + 239 = 483	198 + 336 = 534	ME
116 + 341 = 457	160 + 326 = 486	160 + 382 = 542	BD

^{*} Number of seats + Standing room 4 persons per m²

MD = Mono-directional vehicle; BD = Bi-directional vehicle

63 m

72 m

Avenio: Made for every infrastructure, every system every need and for more passengers

Avenio – Result of 130 years of experience in tram manufacturing and 20 years of expertise in the 100% low-floor market

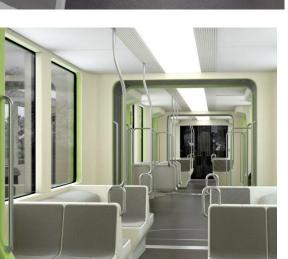
Avenio Munich

Avenio: Doha Education City (Qatar)

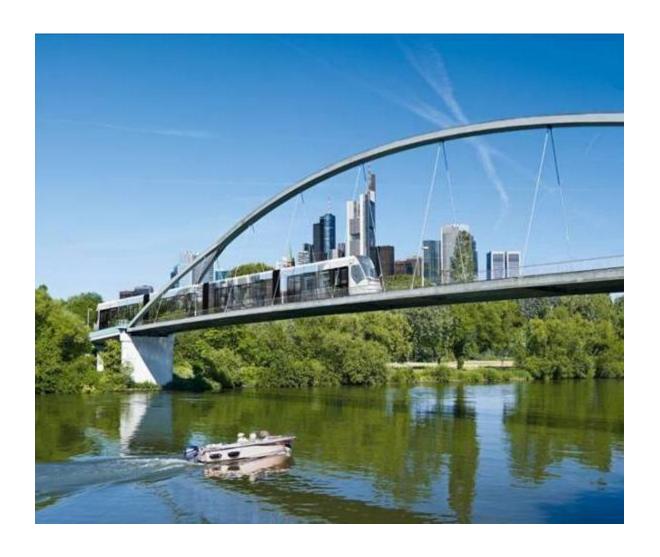
Avenio M: Result of a continuous evolution, modularity and economic efficiency at its best

Avenio M – Result of a continuous evolution with focus of improvements on reliability, safety and comfort

Avenio M Ulm



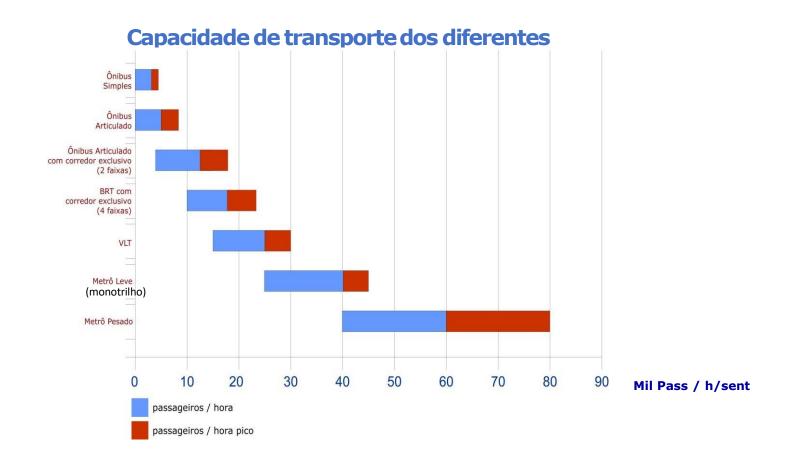
Our trams: Made for your cityscape and your budget The window to your city



Our trams: Also better for the environment

Comparison with buses, LRT and metros

	Bus/tram	LRT	Metro
Curve radius	> 11 m	15 to 80 m	> 80 m
Gradient	= 10 to 12%</td <td><!--= 7%</td--><td><!--= 7%</td--></td></td>	= 7%</td <td><!--= 7%</td--></td>	= 7%</td
Tunnel diameter (2L)	8 m	10 m	10 m
Track topology	mixed traffic	(partially) dedicated track	dedicated track
Station length	10 to 40 m	40 to 120 m	> 120 m
Capacity (PPHPD)	1,000 to 10,000	3,000 to 25,000	15,000 to 60,000
Bus/train length	10 to 40 m	20 to 120 m	80 to 120 m
Comm. average speed	20 to 25 km/h	20 to 35 km/h	35 to 40 km/h
Headway (peak hour)	5 min	2 min	1 min
Average station spacing	0.1 to 0.6 km	0.3 to 0.8 km	0.5 to 1.0 km



A QUESTÃO DA OFERTA FACE À DEMANDA

HORIZONTE DO PROJETO

ÍNDICES (tempo de viagem, headway, velocidade)

QUALIDADE a (acessibilidade, disponibilidade, conforto, lotação pass/m²)

COMPARANDO BRT x VLT x METRÔ LEVE x MONOTRILHO

	BRT	VLT	Metrô Leve	Monotrilho
VIA	Em superfície	Superfície ou elevado	Superfície, elevado ou subterrâneo	Elevado
Tecnologia	Dominada e fornecimento amplo e padronizado	Dominada e fornecimento amplo e padronizado	Dominada e fornecimento amplo e padronizado	De domínio e fornecimento restrito e não padronizado
Oferta pico (mil pass/h/sent)	10 a 30	15 a 35	25 a 45	15 a 35
Regularidade do transporte	Média	Média (se em superfície)	Alta	Alta
Segurança operacional	Média	Média	Elevada	Elevada
Custo de implantação (US\$)	15 a 20	20 a 30	40 a 80	40 a 80
Headway minimo (seg)	40	40	80	80

Grades of operation and automation

GOA 4

UTO – unattended train operation

- No train driver necessary
- Fully autonomous train operation (inkl. emergency recovery and stabling)
- No train attendant on board.

GOA 3

DTO – driverless train operation

- No train driver necessary
- Fully automatic train operation (braking, acceleration, stopping, opening and closing of doors)
- Train attendant on board for emergency situations

GOA 2

STO - semi-automated train operation

- Train runs automatically from station to station
- Automatic stop and door opening
- Train operated by a driver supported by an Automatic Train Operation (ATO) system

GOA 1

SCO – supervision and control train operation

- Driver controls train manually
- Cab display indications
- Automatic train protection (e.g. train stop, max. speed supervision) takes over the main safety aspects

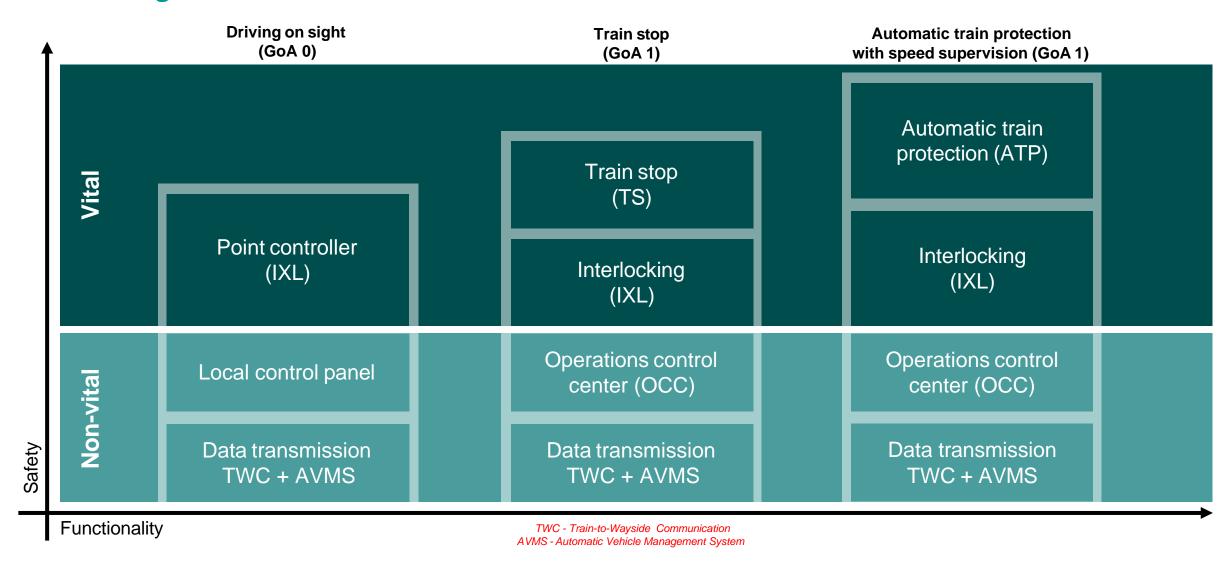
GOA 0

Driving on sight

• Driver controls the train manually and assumes responsibility for safety.

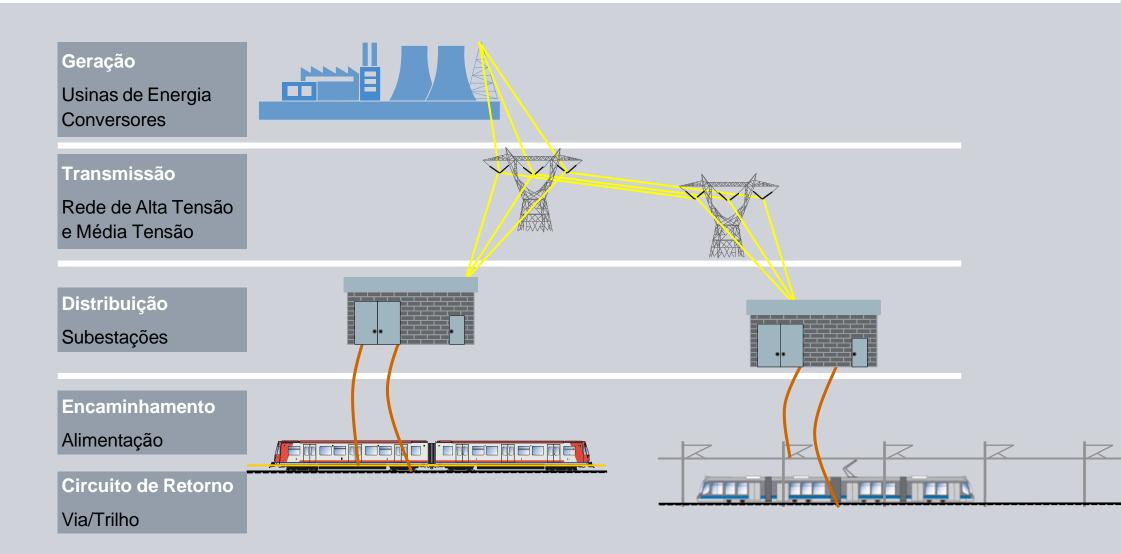
SIEMENS

=quipment upgrade


Level of operation and automation

Grade of automation

SIEMENS


Levels of light-rail transit solutions

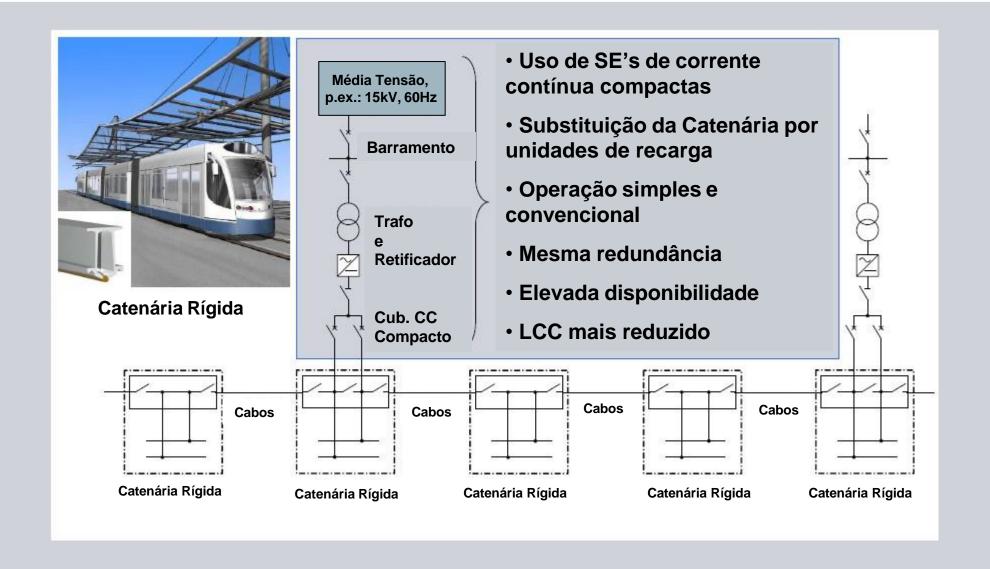
Eletrificação para transportes de massa Arquitetura do Sistema

Alimentação Elétrica em Corrente Contínua Subestações

- Salas Técnicas em Túneis
- Prédios Pré-fabricados
- Container

Alimentação Elétrica em Corrente Contínua Cubículos de Corrente Contínua

Desenvolvido especialmente para aplicação de VLT mais leve e compacto. Retificador Integrado Sitras® CSG - Solução que se pretende aplicar em Brasília.



Cubículo Compacto CC com Retificador Integrado Sitras[®] CSG

Configuração:

Contato

Rezien Possidente

Business Development & Strategic Initiatives Mobile: +55 11 99759-1922

rezier.possidente@siemens.com

Siemens Mobility Website contact.mobility@siemens.com

Para mais informações:

About us Careers Press releases

- Stay updated with news, reports, and releases
- @SiemensMobility Connect with the mobility community
- @Siemens Mobility Experience and learn about the mobility world through meaningful stories
- @Siemens_Mobility See the stunning showcase of our state-of-the-art trains
- @SiemensMobility Get inspired by the latest updates and thought leadership pieces

Thank you!

¡Gracias!

Obrigado!

84 LOW-FLOOR TRAMS

Avenio Bremen, Germany

Siemens Mobility is one of the leading providers of integrated mobility solutions for urban areas as well as vehicles for mass transit and mainline traffic.

In June 2017, the German operator Bremer Straßenbahn AG (BSAG) ordered 67 Avenio® trams from Siemens. Only seven months later in January 2018, BSAG exercised the first option for ten new vehicles. The second option of seven Avenios followed in December 2021.

The four-car trains are being delivered since 2020. The Avenios are replacing the GT8N-series trams currently in service and will have the BSAG type designation GT8N-2.

With the front end painted the company's signature bright red and featuring the BSAG logo, the design references earlier Bremer Strassenbahn trams, clearly identifying the Avenios as new members of the BSAG fleet.

4-section articulated train, Vehicle configuration Bo'Bo'2'Bo'

Technical data

Vehicle type/platform

unidirectional vehicle Wheel arrangement 6 x 120 kW Motor power rating Steel, CDP-coated Car body material 1,435 mm Gauge Vehicle length over coupler approx. 36,900 mm Car width 2,650 mm Entrance height/floor height 305 mm/445 mm above bogies above ToR Passenger capacity 250 including 70 seats/ with 4 passengers/m2 25 folding seats 7 double doors with 1,300 mm clear width Passenger doors Maximum operating speed DC 600/750 V (catenary voltage) Power supply

Avenio

100% low-floor articulated multiple unit

Technical properties/special features

- Excellent passenger comfort thanks to open, bright interior design with seats and handrails optimally designed according to ergonomic criteria; passengers can choose between upholstered and genuine wood seats
- Air-conditioning for passenger area and driver's cab and optimized running characteristics with three suspension stages
- Convenient access for passengers thanks to eight large multifunctional areas for strollers, walkers, and two wheelchairs
- Speedy boarding and alighting thanks to wide doors (seven double doors, 1,300 mm clear width)
- Weight-optimized vehicle design and maximized passenger capacity ensure compliance with limited axle load in existing network and reduced energy consumption
- Improved running characteristics, thanks to longitudinally arranged drives in the bogies and mechanical coupling of the wheels in longitudinal direction, minimal unsprung masses, and optimized bogie-to-car-body coupling
- Highest safety thanks to four independent brake systems
- Electro-dynamic brakes to provide comfortable and smooth braking to standstill and low brake wear
- Redundant design of traction equipment provides maximum reliability and failsafe performance (three IGBT pulse inverters, three SIBAS® 32C traction control units)
- The vehicles are all equipped with the Siemens Tram Assistant, which actively supports the driver in avoiding collisions, thereby increasing safety and reducing repair costs.

Spacious corridors and a clear layout ensure optimal passenger flow.

The bright, multifunctional interior design and the unique seat design guarantee a pleasant ride.

A modern design and multifunctional areas ensure optimal demand-oriented use of space.

Published by Siemens Mobility GmbH

Otto-Hahn-Ring 6 81739 Munich Germany contact.mobility@siemens.com TH S62-240226 0724 Avenio® and SIBAS® are registered trademarks of Siemens Mobility GmbH. Subject to changes and errors.

The information given in this document only contains general descriptions and/or performance features which may not always specifically reflect those described, or which may undergo modification in the course of further development of the products. The requested performance features are binding only when they are expressly agreed upon in the concluded contract.

29 LOW-FLOOR TRAMS

Avenio Copenhagen, Denmark

Siemens Mobility is one of the world's leading suppliers of integrated mobility solutions for urban areas and of vehicles for local, regional, and main-line transportation.

In February 2018, Hovedstadens Letbane (The Greater Copenhagen Light Rail) ordered 29 (27 of the Basis, 2 of the Options) four-car trams of the Avenio type from Siemens Mobility. The contract includes options for up to 30 vehicles. These new low-floor streetcars will serve one of three complete new light rail systems in Denmark.

Start of Passenger Operation is scheduled for 2025. In addition to the trams, the Siemens scope of supply includes railway electrification, signaling and communication technology as well as workshop equipment and the complete Project Management and System Integration. Furthermore, Siemens will carry out maintenance over a period of 15 years.

The double-track line is located between the towns of Lyngby in the north and Ishøj in the south of Copenhagen, having a length of 28 kilometres and includes 29 stops. The route runs along the Motorring 3 motorway and is planned to replace a bus route. The tramway is a building block on Copenhagen's path to becoming the world's first CO₂-neutral capital by 2025.

Technical Data

Vehicle type/platform	100% low-floor single-articulated tram vehicle Avenio
Configuration	4-car tram, for bi-directional operation
Wheel arrangement	Bo' 2' Bo' Bo'
Car body material	Steel
Length	36,900 mm
Width	2,650 mm
Entrance height	350 mm above top of rail
Motor power rating	6 x 100 kW
Power supply	750 V DC
Maximum speed	70 km/h
Track gauge	1,435 mm
Capacity (4 pers./m²)	258 including 64 seats
Tare weight	approx. 48 t

Technical features/highlights

- A high-performance air conditioning system and ceiling light design enhance the passenger experience.
- Modern energy-saving LCD passenger information screens allow passengers to access up to date information.
- Excellent traction, acceleration and braking values supported by a fully aligned wheel/rail interface design towards the track profiles of the Network.
- Electro-dynamic brakes enable recuperation and provide smooth and comfortable stopping to standstill.
- Excellent running characteristics and low wheel-rail wear thanks to longitudinally installed drives in the bogies with mechanical coupling of the wheels in the longitudinal direction, small unsprung masses, and proven bogie connection to the car body.
- The interior and exterior design reflecting Hovedstadens Letbane green modern corporate design in a multitude of details, combining the company's strategy towards an ecofriendly future.
- Four multifunctional areas, which are all designed as full wheelchair spaces, ensure optimal demand-oriented space utilization.
- An Inductive Hearing Loop System to assist the hearing impaired.
- Compliant with the latest safety and security standards (including IT security, fire protection).
- Excellent Acoustic Performance regarding both interior and exterior noise levels.
- The driver assistance system "Siemens Tram Assistant" actively supports the driver to avoid collisions, thus improving safety and reducing repair costs

The ergonomic driver's cab provides a good overall view for safe operation.

Bright interior and unique seat design guarantee a pleasant ride.

Spacious boarding areas offer passengers a unique riding experience.

Published by Siemens Mobilty GmbH

Otto-Hahn-Ring 6 81739 Munich Germany contact.mobility@siemens.com DY 240026 0124 Avenio® is a registered trademark of Siemens Mobility GmbH.

Subject to changes and errors.
The information given in this document only contains general descriptions and/or performance features which may not always specifically reflect those described, or which may undergo modification in the course of further development of the

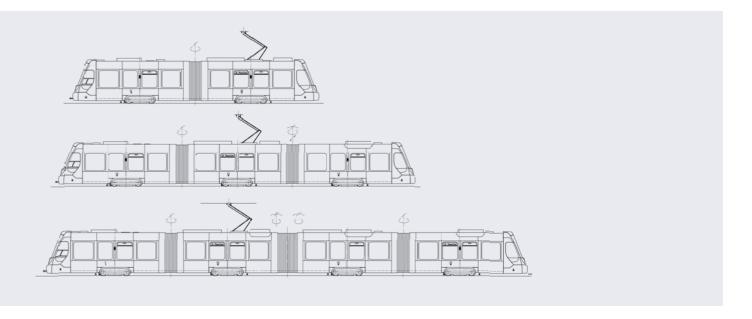
products. The requested performance features are binding only when they are expressly agreed upon in the concluded contract.

103 LOW-FLOOR TRAMS

Avenio Munich, Germany

In 2015, the SWM (Munich municipal utility provider) and the SWM subsidiary MVG (Munich Transport Association) ordered an additional 22 Avenio trams from Siemens. They will supplement the eight trams of the same type which have already been running for passenger service since 2014. A further order for 73 four-car trams was placed in June 2019. That means SWM still has an option for another 51 new units, which it can order in line with requirements.

The order from 2015 includes nine two-car trains, nine three-car trains and four four-car trains. The two-car and three-car units can be coupled to double-traction trains - the longest trams ever used in Munich at around 48 meters. An additional highlight with these trains is fully automatic coupling.


In this configuration they can accommodate around 260 passengers. The four new four-car Avenios correspond to the eight Avenios already in operation in terms of their length and capacity.

The 73 four-car trains ordered in 2019 making up the first option each provide space for about 216 passengers. Delivery of the first trains in this option is scheduled for 2021 to 2027.

Technical data

Vehicle type/ platform	100% low floor single-articulated tram vehicle Avenio				
Configuration	9 pieces 2-car	9 pieces 3-car	8 pieces 4-car	4 pieces 4-car	73 pieces 4-car
g		for unio	directional op	eration	
Wheel arrangement	A1' Bo	2' Bo' Bo'	2' Bo' Bo' Bo'		Boʻ 2ʻ Boʻ Boʻ
Car body material	Steel	Steel			
Length	19,069 mm	9,069 mm 27,699 mm 36,850 mm			
Width	2,300 mm				
Entrance height/ floor height	300 mm Entrance height/floor height				
Motor power rating	2 x 60 kW + 2 x 120 kW	1 × 120 kW 6 × 120 kW			
Power supply	DC 750 V				
Maximum speed	70 km/h				
Track gauge	1,435 mm				
Capacity (4 P/m²)	103 incl. 33 seats	157 incl. 51 seats	215 incl. 65 seats	219 incl. 60 seats	216 incl. 69 seats
Tare weight	approx. 24 t	approx. 35 t	approx. 45 t		

Technical features/highlights

- The latest 73 vehicles ordered will all be equipped with the Siemens Tram Assistant, which actively supports the driver in avoiding collisions, thereby increasing safety and reducing repair costs.
- The new Avenio for Munich is the first Siemens tram equipped with RFID (radio-frequency identification) tags, which means operators can automatically track components equipped with these tags throughout their entire lifetime.
- A large number of doors enables fast boarding and exiting.
- The vehicles have a redundant auxiliary power supply system that ensures
 the continued power supply to the auxiliary systems in the event of an
 inverter or battery charger failure.
- The automatic coupling on the two and three-car units allows the formation of a train set.
- One vehicle in this option will be fitted with a hybrid energy storage system, and the others will be equipped to accommodate such a system in the future.

Spacious boarding areas improve the passenger flow

The bright, multifunctional interior design and the unique seat design guarantee a pleasant ride.

A wheelchair lift enables passengers with reduced mobility to board the train without barriers, even from street level.

Published by Siemens Mobilty GmbH

Otto-Hahn-Ring 6 81739 Munich Germany For worldwide use (excl. U.S.) contact.mobility@siemens.com DY 240026 0324 Avenio® is a registered trademark of Siemens Mobility GmbH.

Subject to changes and errors.
The information given in this document only contains general descriptions and/or performance features which may not always specifically reflect those described, or which may undergo modification in the

course of further development of the products. The requested performance features are binding only when they are expressly agreed upon in the concluded contract.

26 LOW-FLOOR TRAMS

Avenio GTA8 Nuremberg, Germany

Siemens Mobility is one of the world's leading suppliers of integrated mobility solutions for urban areas and of vehicles for local, regional, and main-line transportation.

The VAG Verkehrs-Aktiengesellschaft Nuremberg ordered 26 four-car trams of the Avenio type from Siemens Mobility. The contract includes options for up to 87 additional vehicles. These new low-floor streetcars are intended to strengthen VAG's service offering and for potential new lines. The Avenios have been beautifying Nuremberg's cityscape since 2023.

The four-car Avenio streetcars will successively take up passenger service on the Nuremberg tramway network, which has seven lines and covers an operating length of approximately 38 km.

Technical data

Vehicle type/ platform	GTA8/100% low-floor single- articulated tram vehicle Avenio
Configuration	4-car tram for unidirectional operation
Wheel arrangement	2' Bo' Bo' Bo'
Car body material	Steel
Length	36,850 mm
Width	2,300 mm
Entrance height/floor height	300 mm above bogies
Motor power rating	6 x 100 kW
Power supply	DC 600 V/750 V
Maximum speed	70 km/h
Track gauge	1,435 mm
Capacity (4 pers./m²)	218 including 62 seats
Tare weight	approximately 45 t

Technical features/highlights

- A high-performance air conditioning system and an innovative LED ceiling light design enhance the passenger experience.
- Modern energy-saving LCD passenger information screens and Internet provided via WLAN allow passengers to access up-to-date information and USB charging sockets complete the picture.
- With its three powered bogies, the Avenio Nuremberg has excellent traction and high acceleration values for VAG's demanding and sometimes "mountainous" route profile.
- The unique VAG seat design and the extra-wide seats increase passenger comfort
- The interior and exterior design reflect the new VAG corporate design in a multitude of details, combining the company's modernization strategy with a sense of home and tradition.
- Intensive coordination with disabled rights organizations took place during the design phase. This made it possible to achieve the greatest possible usability of the tram for passengers with reduced mobility.
- Improved running characteristics and low wheel-rail wear thanks to longitudinally installed drives in the bogies with mechanical coupling of the wheels in the longitudinal direction, small unsprung masses, and proven bogie connection to the car body
- Compliant with the latest security standards (including IT security, fire protection).
- Electro-dynamic brakes provide smooth and comfortable stopping to standstill.

Spacious boarding areas improve the passenger flow.

Multifunctional areas ensure optimal demand-oriented use of space.

The bright, multifunctional interior design and the unique seat design guarantee a pleasant ride.

Published by Siemens Mobilty GmbH

Otto-Hahn-Ring 6 81739 Munich Germany For worldwide use (excl. U.S.) contact.mobility@siemens.com DY 240026 0324 Avenio® is a registered trademark of Siemens Mobility GmbH.

Subject to changes and errors.
The information given in this document only contains general descriptions and/or performance features which may not always specifically reflect those described, or which may undergo modification in the

course of further development of the products. The requested performance features are binding only when they are expressly agreed upon in the concluded contract.

Tram References Avenio Education City – Doha, Qatar

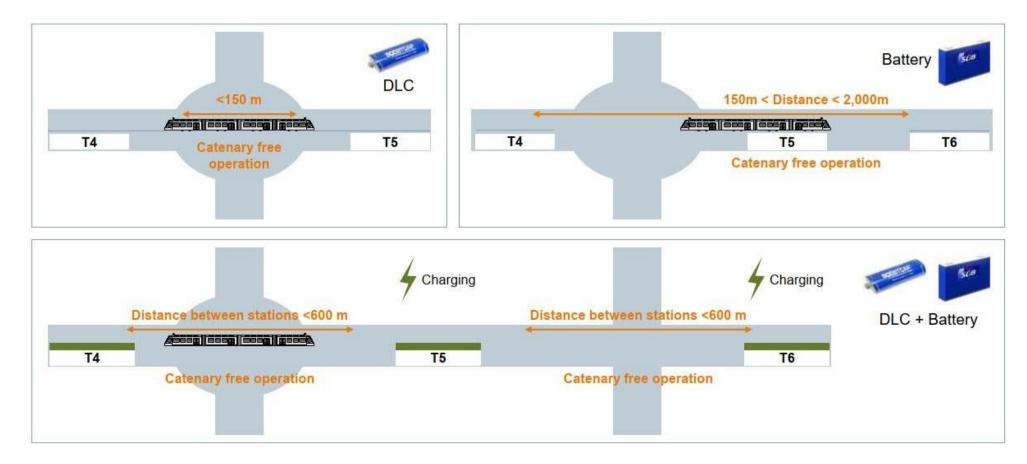
Project data	
Year of construction	2014–2015
Number of vehicles	19 trains
Scope of delivery	100%, complete vehicle
Special features	Adaptation to climatic conditions (sun / heat, dust / sand); Vehicle for catenary-free operation (ultra caps)

Vehicle data		
Vehicle type / Platform	100% low floor single-articulated tram vehicle / Avenio	
Configuration	3-car (bi-directional operation)	
Wheel arrangement	Boʻ 2ʻ Boʻ	
Car body material	Steel	
Length (over coupling)	27,700 mm	
Width	2,550 mm	
Entrance height / floor height	350 mm / 435 mm above bogies	
Motor power rating	4 x 120 kW	
Power supply	DC 750 V	
Maximum speed	40 km/h	
Track gauge	1,435 mm	
Capacity (4 P/m²)	157, incl. 48 seats / 3 tip-up seats	
Tare weight	approx. 45 to	

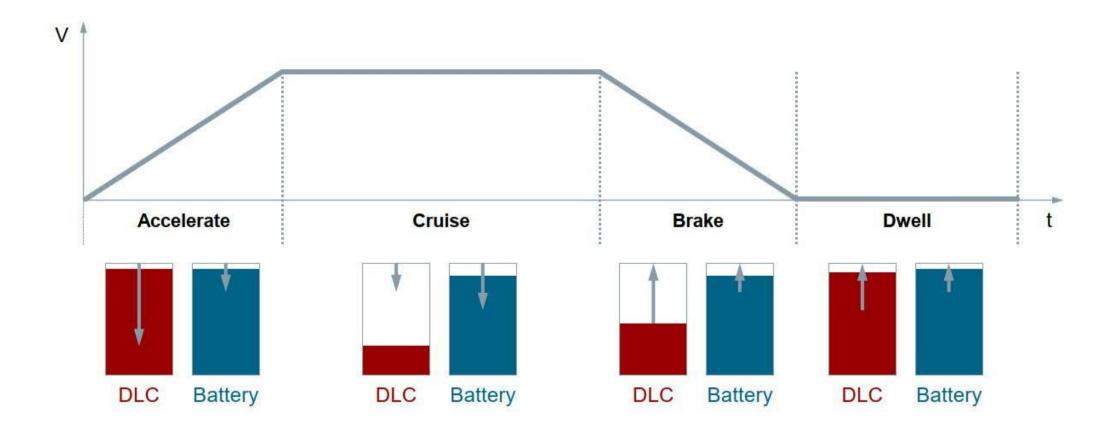
Siemens Catenary Free Solution Hybrid Energy Storage System (HESS)

High performance batteries

Batteries provide highest energy capacity for unexpected stops and longer sections without catenary



Unrestricted © Siemens Mobility GmbH 2019


Siemens Catenary Free Solution Applications of the HESS

Siemens Catenary Free Solution How the HESS works

Unrestricted © Siemens Mobility GmbH 2019

Page 24

Siemens Catenary Free Solution Benefits of an energy storage solution

Safety

- Enhanced safety, no danger by magnetic fields and touch voltages
- No impact on road construction and maintenance
- No influence by sand, water, flooding ...

Environmental

- Up to 25% energy savings
- Up to 25% lower CO2 emissions
- No additional weight > compensated through light and optimized vehicle construction

Maintenance

- Low operation costs
- Maintenance free technology / no complex switching technology
- · Easy to extend and upgrade

Market

- Participation in world future technology
- Open systems, i.e., no dependency on one supplier

Siemens Catenary Free Solution Distance

System	Cate	Catenary Free Distance		Technology
System	< 0.5 mile	< 1 mile	> 1 mile	rechnology
Lisbon - SIEMENS			*	Battery & Super Capacitors
Doha - SIEMENS	•			Battery & Super Capacitors
*Qatar - SIEMENS			+	Battery

A new range of trams

and the versatility to adapt to the needs of an operator are the hallmarks of the Tramlink.

GENERAL CHARACTERISTICS

Option of two traction units

Body made of high-strength stainless

Glued external plating for easy repair

Optional rear view camera

Large glazed surface

Complies with EN 15227 for crashworthiness

Regenerative braking with energy storage and saving systems

Water-cooled traction motors

Sanding systems in all motorized axles

Wheel flange lubrication system (time, distance and location can be scheduled)

Anti-skid and anti-slip protection

Advanced passenger information

Independent HVAC in driver cabs and passenger areas

CCTV system

People counting/fire detection systems

All bogies with high-duty electromagnetic track brakes

Possibility to install rear view cameras

Maximum floor gradient 5%

Customized frontal design and interior layout

TRAMLINK FAMILY	
Power supply voltage	750 V DC (+20-30%)
Minimum track radius (normal operation/depot)	18 m // 17 m
Interconnecting aisle	Width >1,230 mm
Low floor	100%

PERFORMANCE	
Maximum speed	70 km/h
Acceleration (up to 35 km/h)	1.2 m/s ²
Normal deceleration	1.2 m/ s ²
Emergency deceleration	2 m/ s ²
Minimum deceleration with safety brake	1 m/ s²
Maximum gradient	8%
Rated output	4 x 105 kW (V3)

TRANSPIR POCIES	
TRAMLINK BOGIES	
Gauge	1,000 mm // 1,435 mm
Wheelbase	1760 mm
Wheel diameter (new / / worn)	600 mm // 520 mm
Primary suspension	Rubber-metal springs
Secondary suspension	Conventional wheelsets

TRAMLINK DIMENSIONS (basic V3 configuration	n)
Number of cars	5
Overall length	28 to 35 m
Height (pantograph folded)	3,450 mm
Width	2.0 m // 2.40 m // 2.65 m
Floor height	360 mm // 450 mm
Access height	315 mm
Doors each side (Tramlink, bidirectional)	4 double: 2,000 x 1,300mm 2 single: 2,000 x 800 mm

TRAMLINK CAPACITIES (standard V3, 2.65 m)	
Seats	54 + 6 folding
Standing (4 passengers / m²)	182
Multipurpose areas	2

WEIGHT (standard V3, 2.65 m)	
Car weight (empty)	41,500 kg ± 3% (basic configuration)
Rated payload (4 p/m²)	55,000 kg

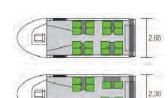
Vossloh España, S.A.
Poligono Industrial del Mediterráneo
C/ Mitjera n° 6
46550 - Albuixech (Valencia), SPAIN
Phone (+34-96) 141 5000
Fax (+34-96) 141 5007

www.vossloh-rail-vehicles.com

With the guarantee of more than a century

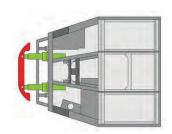
of experience from contributing to innovative solutions in fail transport, our goal is to ign and develop technologically advanced, high-performance and environment-friendly ing stock that allows comfortable, fast, safe and accessible transport tailored to the ciffic needs of operators and passengers alike.

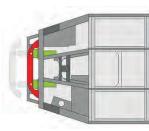
(Tramlink


| TRAMLINK CONFIGURATIONS | LENGTHS | V2 • 2 bogies • 3 modules | 21 m to 27 m | V3 • 3 bogies • 5 modules | 28 m to 35 m | V4 • 4 bogies • 7 modules | 37 m to 44 m | V5 • 5 bogies • 9 modules | 46 m to 57 m | V5 • 7 m |

A comfortable model

Vossloh's experience in the design, integration and manufacture of complete vehicles combined with vast technological knowledge in the development of high-performance bogies, assure the best ride dynamics and greater use of interior space without steps or ramps, allowing up to 16 seats above the bogies and passengers a safe and comfortable journey.

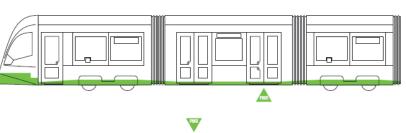



A sustainable and ecological vehicle

Tramlink is engineered to have the longest possible life-cycle with the lowest maintenance costs. The energy recovery and storage systems as well as the use of stainless steel with a high elastic limit, minimize your operating costs while ensuring compliance with EN 15227 requirements for crashworthiness.

A versatile vehicle

With configurations of 3, 5, 7 or 9 articulated cars, with lengths ranging between 21 and 57 meters. Adaptable to metric and standard gauges, and allowing width options of 2.30 to 2.65 meters. A low-floor tram with customizable design.

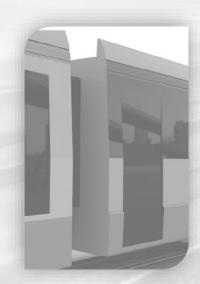


An accessible vehicle

100% low floor and fully accessible for people with limited mobility. Multipurpose areas.

Apresentação Institucional

Alinhada com o propósito de melhorar a experiência de vida por meio da mobilidade, a Marcopolo Rail é uma unidade de negócios do Grupo Marcopolo, especializada no desenvolvimento e produção de modais ferroviários.



Portfólio de Atuação

PROSPER Multiple Units PROSPER TRAM

CARROS de Passageiros

CARBODY Manufacturing

MODERNIZAÇÃO & Manutenção

VersõesTurismo, Intercidades e Urbana

Produto versátil, com baixos custos de implantação e operacionais, aliados a um design moderno e confortável.

- Bidirecional;
- Embarque em Plataforma 1,10m;
- · Bitolas Métrica, Standard ou Larga;
- · Janelas e Portas de emergência;
- · Equipamento de ar condicionado com aquecimento e refrigeração
- · Gama Completa de Opcionais;

-DMU (Diesel Multiple Units) -HYBRID (Sob Consulta)



PROSPER Multiple Units

VERSÃO URBANA

- -Atendimento à normas internacionais ferroviárias;
- -Sistema de ar-condicionado tipo monobloco;
- -Truques com suspensão a ar secundária;
- -Ampla área envidraçada;
- -Cabine com envoltório acional ergonômico;
- -Alta capacidade de customização;
- -Bidirecional

Powerpack diesel-hidromecânico: Composto de motor diesel horizontal de 390 kw @ 1800 rpm com gerador elétrico integrado, transmissão automática de 4 velocidades e caixa de reversão do sentido de marcha.

VANTAGENS:

- -FACILIDADE DE MANUTENÇÃO E REPARO
- -MENOR RISCO QUANDO COMPARADO COM EQUIPAMENTOS DE ALTA TENSÃO
- -BAIXO CUSTO LCC LIFE CYCLE COST

2 carros - 360 passageiros



3 carros - 560 passageiros

4 carros - 760 passageiros

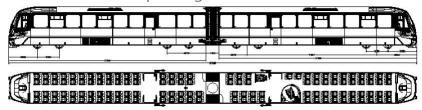
INTERIORISMO: Os layouts são desenvolvidos conforme a aplicação, visando maior conforto do passageiro e maior aproveitamento do salão.

Dados Técnicos

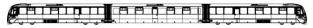
(DMU - Diesel Multiple Units)

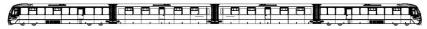
(Bito Biesel Hatelp	ne office	,	
Composição da Unidade Operacional (VLT) - carros	2	3	4
Configuração de motorização dos carros MC = Motor Car \ TC = Trailer Car	MC+MC	MC+TC+MC	MC+TC+TC+MC
	44	1000	1
Bitola da via (mm)	(12	135 / 1600 sob	,
Movimentação		bidirecion	al
Número de cabines por VLT		2 (duas)	
Material das janelas		Policarbonato /	[/] Vidro
Material de balaústres e pega-mão	Aço inoxidável		
Comprimento aproximado de cada carro		18.000 mr	n
Largura externa máxima		2.900 mm	า
Altura máxima do veículo	3.900 mm		
Altura do piso ao boleto do trilho na região das portas		1.100 mm	า
Tipo de motorização para tração		Diesel-hidráu	ılica
Peso máximo por eixo		13000 Kg	f
Largura do vão das portas (versão urbana)		>=1200 mi	m
Número de vãos de portas por lado do carro (versão urbana)		3 (três)	
Circulação interna entre carros		Gangway	1
Raio mínimo de curva horizontal		90 m	
Raio mínimo de curva vertical		500 m	
Rampa máxima		3%	
Capacidade total de pass. por VLT (6 pass/m²)	360	560	760
Capacidade passageiros sentados por VLT (6 pass/m²)	84	128	172
Velocidade máxima operacional		80 Km/h	
Aceleração na partida	0,95 m/s ²	0,70 m/s ²	0,55 m/s ²
Desaceleração em serviço máximo		0,8 + 10% - 5%	m/s ²
Desaceleração em emergência		1,0 ± 10% m	ı/s²
Nível máximo de solavanco		1,0 m/s ³	

- -Atendimento à normas internacionais ferroviárias;
- -Sistema de ar-condicionado tipo monobloco;
- -Truques com suspensão a ar secundária;
- -Ampla área envidraçada;
- -Cabine com envoltório acional ergonômico;
- -Alta capacidade de customização;
- -Bidirecional


Powerpack diesel-hidromecânico: Composto de motor diesel horizontal de 390 kw @ 1800 rpm com gerador elétrico integrado, transmissão automática de 4 velocidades e caixa de reversão do sentido de marcha.

VANTAGENS:


- -FACILIDADE DE MANUTENÇÃO E REPARO
- -MENOR RISCO QUANDO COMPARADO COM EQUIPAMENTOS DE ALTA TENSÃO
- -BAIXO CUSTO LCC LIFE CYCLE COST


2 carros - 122 passageiros

3 carros - 180 passageiros

4 carros - 248 passageiros

INTERIORISMO: Os layouts são desenvolvidos conforme a aplicação, visando maior conforto do passageiro e maior aproveitamento do salão.

Dados Técnicos

(DMU - Diesel Multiple Units)

(DMO - Diesei Mult	ipic oili	.3)	
Composição da Unidade Operacional (VLT) - carros	2	3	4
Configuração de motorização dos carros MC = Motor Car \ TC = Trailer Car	MC+MC	MC+TC+MC	MC+TC+TC+MC
		1000	
Bitola da via (mm)	(1	435 / 1600 sob	•
Movimentação	bidirecional		
Número de cabines por VLT	2 (duas)		
Material das janelas	Policarbonato / Vidro		
Comprimento aproximado de cada carro	18.000 mm		
Largura externa máxima	2.900 mm		
Altura máxima do veículo	3.900 mm		
Altura do piso ao boleto do trilho na região das portas	1.100 mm		
Tipo de motorização para tração	Diesel-hidráulica		
Peso máximo por eixo		13000 Kg	
Largura do vão das portas (versão intercidades)		<=1.000 mi	m
Número de vãos de portas por lado do carro		1 (um)	
Circulação interna entre carros		Gangway	
Raio mínimo de curva horizontal		90 m	
Raio mínimo de curva vertical		500 m	
Rampa máxima		3%	
Capacidade total de pass. por VLT	122+1PCD	180+2PCD	248+2PCD
Capacidade passageiros sentados por VLT	122	180	248
Velocidade máxima operacional	80 Km/h		
Aceleração na partida	0,95 m/s ²	0,70 m/s ²	0,55 m/s ²
Desaceleração em serviço máximo	0,8 + 10% - 5% m/s ²		
Desaceleração em emergência		1,0 ± 10% m	/s²
Nível máximo de solavanco		1,0 m/s ³	

VERSÃO HMU (HYBRID MULTIPLE UNITS)

Produto versátil, com baixos custos de implantação e operacionais, aliados a um design moderno e confortável.

- Bidirecional;
- Embarque em Plataforma 1,10m;
- · Bitolas Métrica, Standard ou Larga;
- · Janelas e Portas de emergência;
- · Equipamento de ar condicionado com aquecimento e refrigeração
- · Gama Completa de Opcionais;

Powerpack Híbrido

- Motor Diesel
- Motor elétrico de tração gerador
- Caixa de Cambio
- Exaustor após tratamento de emissões
- Tanque de AdBlue®
- Baterias de Lithium-ion
- Conversor de Tração
- Sistema de controle

PROSPER

Marcopolo ZALL

HYBRID

INTERIORISMO: Os layouts são desenvolvidos conforme a aplicação, visando maior conforto do passageiro e maior aproveitamento do salão.

Tecnologia

- -Atendimento à normas internacionais ferroviárias;
- -Sistema de ar-condicionado tipo monobloco;
- -Truques com suspensão a ar secundária;
- -Ampla área envidraçada;
- -Cabine com envoltório acional ergonômico;
- -Alta capacidade de customização;
- -Bidirecional

2 carros - 360 passageiros

3 carros – 560 passageiros

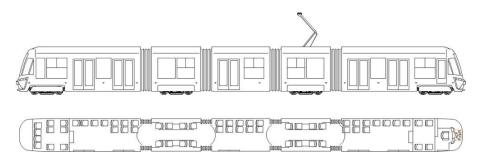
4 carros - 760 passageiros

(HMU - HYBRID Multiple Units)

Composição da Unidade Operacional (VLT) - carros			
Bitola da via (mm)	1000 (1435 / 1600 sob	consulta)
Movimentação		bidirecional	
Número de cabines por VLT		2 (duas)	
Material das janelas	P	olicarbonato / V	idro
Material de balaústres e pega-mão		Aço inoxidáve	I
Comprimento aproximado de cada carro		18.000 mm	
Largura externa máxima		2.900 mm	
Altura máxima do veículo		3.900 mm	
Altura do piso ao boleto do trilho na região das portas		1.100 mm	
Tipo de motorização para tração	DIESEL	-ELÉTRICO (Com	baterias)
Peso máximo por eixo		13000 Kgf	
Largura do vão das portas (versão urbana)		>=1200 mm	
Número de vãos de portas por lateral(versão urbana)		3 (três)	
Circulação interna entre carros		Gangway	
Raio mínimo de curva horizontal		90 m	
Raio mínimo de curva vertical		500 m	
Rampa máxima		3%	
Capacidade total de pass. por VLT (6 pass/m²)	2 Carros: 360	3 Carros: 560	4 Carros: 760
Velocidade máxima operacional		80 Km/h	
Aceleração na partida	0,95 m/s ²	0,70 m/s ²	0,55 m/s ²
Desaceleração em serviço máximo	(),8 + 10% - 5% m	n/s²
Desaceleração em emergência		1,0 ± 10% m/s	2
Nível máximo de solavanco		1,0 m/s³	

Versatilidade e tecnologia conectadas com o que há de mais atual em Veículos Leves sobre Trilhos (TRAMs).

- -Atendimento às normas internacionais ferroviárias;
- -Sistema de ar-condicionado tipo monobloco;
- -Ampla área envidraçada;
- -Cabine com envoltório acional ergonômico;
- -Alta capacidade de customização;
- -100% Elétrico (Catenária);



- -Versatilidade e tecnologia conectadas com o que há de mais atual em Veículos Leves sobre Trilhos (TRAMs).
- -Parcerias Estratégicas.
- -Atendimento às normas internacionais ferroviárias;
- -Sistema de ar-condicionado tipo monobloco;
- -Ampla área envidraçada;
- -Cabine com envoltório acional ergonômico;
- -Alta capacidade de customização;
- -100% Elétrico (Catenária)

INTERIORISMO: Os layouts são desenvolvidos conforme a aplicação, visando maior conforto do passageiro e maior aproveitamento do salão.

Dados Técnicos (TRAM 100% Elétrico)

Dados Toomoos (Tram	100/0 =1011100/
Composição da Unidade Operacional (VLT) - carros	Informações Técnicas
Bitola da via (mm)	1435 \ 1000
Movimentação	Bidirecional ou Unidirecional
Número de cabines por VLT	2 (duas) \ 1(Uma) Opcional
Número de CARROS por Composição	5
Comprimento da composição (metros)	32m
Largura externa máxima	2.400 mm
Altura máxima do veículo	3.700 mm
Altura do piso ao boleto do trilho na região das portas	355 mm
Tipo de motorização para tração / Tensão de alimentação	100% elétrico com catenária / 750 Vcc
Peso máximo por eixo	10000 Kgf
Largura do vão das portas	1300 mm
Número de vãos de portas por lado da composição	5
Circulação interna entre carros	Gangway
Raio mínimo de curva horizontal	25 metros
Rampa máxima	6%
Capacidade total de pass. por VLT (6 pass/m²)	280 PAX
Capacidade passageiros sentados por VLT	40 PAX
Velocidade máxima operacional	75 Km/h

A divisão CARBODY MANUFACTURING produz trens e projetos especiais, que atendem aos mais altos padrões internacionais de qualidade.

CARBODY PARA PEOPLE MOVERS:

- · Design interno exclusivo de 150 a 450 passageiros;
- · 8 portas laterais;
- · Acessibilidade, segurança e sinalização interna conforme normas internacionais;
- · Sistema de entretenimento e informação para passageiros;
- · Integração de todos os subsistemas;

CARBODY

Manufacturing

Tecnologia e design que garantem mais conforto, segurança e modernidade aos usuários e mais robustez e longo ciclo de vida do sistema.

CARBODY PARA PEOPLE MOVERS:

- Design interno exclusivo de 150 a 450 passageiros;
- · 8 portas laterais;
- · Ar condicionado para refrigeração, aquecimento e ventilação de emergência;
- · Acessibilidade, segurança e sinalização interna conforme normas internacionais;
- · Sistema de entretenimento e informação para passageiros.

MODERNIZAÇÃO & Manutenção

- Projetos especiais para modernização \ reforma de trens;
- · Alta capacidade de customização;
- · Pós-vendas e assistência técnica em toda a América Latina;

- · Contratos de Manutenção;
- Reparos de Acidentes;
- · Peças de Reposição;
- · Revisão;

Complexo Industrial Marcopolo

Caxias do Sul – RS - BRASIL

Escritório Corporativo

Planta Industrial Ferroviária

Escritório São Paulo

Av. Pres. Tancredo Neves, 228 Vila Nancy, São Paulo - SP

www.marcopolorail.com

- Contents -

- 1. Why Hydrogen Fuel Cell Tram?
- 2. Hyundai Rotem Hydrogen Tram
- 3. Hydrogen Mobility Roadmap
- 4. Hydrogen Infrastructure

1. Why Hydrogen Fuel Cell Tram?

Advantage of Hydrogen Fuel Cell Train

- Sustainable energy source without any emission of air pollutants
- Most abundant element on universe and respond to growing energy demands
- Renewable energy to generate green hydrogen

- Up to three times more efficient than internal combustion engines
- Long cruising distance further than battery-powered electric trains
- Quick refueling time compared to charging battery

- No catenary & related substation, power facilities
- Versatility for Line extension
- Hydrogen cost decrease over time

- No greenhouse gas & Air purification(99.99%) ※ 31ton of air purification per day
 - * 31ton of air purification per day
- Hydrogen is non-toxic and disperses into the air when leaked
- ✓ No catenary to harm urban aesthetic

1. Why Hydrogen Fuel Cell Tram?

Competitiveness of Hydrogen Fuel Cell

Category	Battery Tram	Super-capacitor Tram	Hydrogen Fuel Cell Tram
Power Source	: LPal Battery	A SOLUTION OF STREET OF ST	
Energy Density	Middle	Low	High
Running Distance	≤ 10km (One-way)	≤ 1km (Short distance between stations)	+-150 km (suitable for multiple round-trips)
Charging Time	≤1 Hour (Battery charging station)	30 Seconds (Charging via catenary at stations)	15 Minutes (Hydrogen Refuel station)
Operation Method	Non-catenary + catenary section	Non-catenary + catenary section	Non-catenary
Operation Facility	Battery Charging Station	Super capacitor charging facilities	Hydrogen Refuel station
Operation Purpose	Short Distance (less than 10km)	Between stations (less than 1km)	Non-limit (Long/short Distance)

1. Why Hydrogen Fuel Cell Tram?

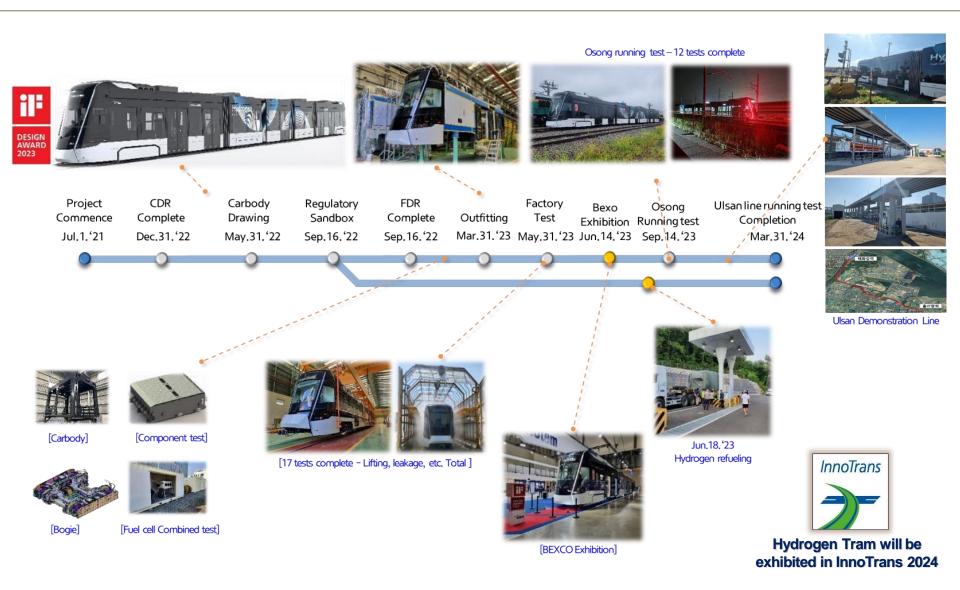
Competitiveness of Hydrogen Fuel Cell

Cotogoni	Catenary System	Catenary-Free System			
Category	Overhead	3 rd Rail (APS)	Super Capacitor	Battery	Hydrogen Fuel Cell
Power Source	Overhead Catenary	Street-level Power Supply Rail	Rapid charging at Stations	Battery charging at Depot / Stations	Hydrogen charging at Refueling Station
Vehicle Image					
Running Distance	Unlimited	Unlimited	1km (single charge)	10km (single charge)	> 150km
Charging Time	-	-	30 Seconds (charges at stations)	> 1 hour	15 minutes
Operation Method	Catenary	Third Rail	Non-catenary + catenary section	Non-catenary + catenary section	Non-catenary
Basic Facilities (Requirement)	Overhead CatenarySubstations / Power facilities	Ground Power Supply RailSubstations/Power facilities	Overhead Catenary at stationsSubstations/Power facilities	Battery Charging Stations(Depot, station)Substations	Hydrogen Refueling Station
Remarks		 Ground power facilities (BOX, 1 box per 22m) Low maintainability of box due to high humidity and rain. 			

Hydrogen fuel cell is the suitable solution for heavy duty train

Demonstration Schedule

Project Schedule



Traces of Demonstration

Main Specifications

Performance	
Maximum Operating Speed / Maximum Design Speed	50km/h / 70km/h
Maximum Running Distance	150 km (1 charging) X Variable subject to operating conditions
Train Configuration	5 modules
Acceleration	1.0m/s ²
Deceleration	(Service) 1.2m/s², (Emergency) 2.7m/s²
Major Specification	
Gauge	1,435mm
Dimension (L*W*H)	35,000 X 2,650 X 3,700 mm
Floor Height	350mm, 100% Low floor
Carbody Material	Mild Steel
Hydrogen Fuel Cell	4 x 95kW
Hydrogen Storage (per set)	6 x Type IV 175L Tanks (42.24kg)
Bogie	4 (2 rotational bogies & 2 fixed bogies)
Axle Load	11.5 ton
Capacity (total)	305 people (40 seats) (6 p/m²)
HVAC	HVAC 3 Sets
Door	Double leaf plug-in door (5 per side)

Exterior Design Concept

Interior Design Concept

iF DESIGN AWARD 2023 (Award date: '23. April. 14)

DISCIPLINE PRODUCT **CATEGORY AUTOMOBILES / VEHICLES**

HYDROGEN FUEL CELL TRAM

Hydorgoen fuel cell tram

DESIGN

Hyundai Rotem Yoonoh Nami Uiwang-si, Republic of Korea

CLIENT / MANUFACTURER

Hvundai Rotem Uiwang-si, Republic of Korea

1.01 Automobiles / Vehicles

Hydrogen fuel cell tram

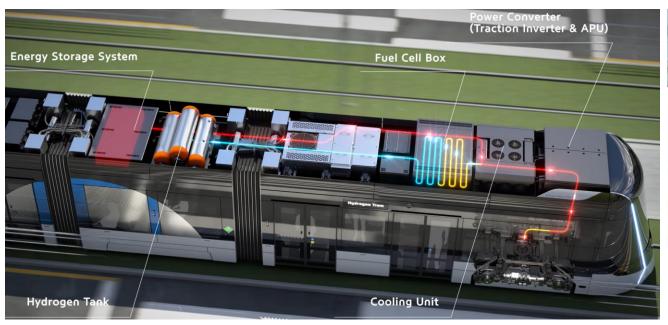
Hydorgoen fuel cell tram

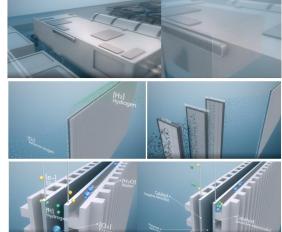
The Hydrogen Fuel Cell Tram is propelled using electrical energy generated by a hydrogen fuel cell loaded inside the trams, unlike general wire-type trams that require pantographs to receive the electric power through overhead wiring infrastructure. The tram itself can travel a distance of about 150km fully laden on a single charge without producing harmful emissions such as carbon, and actually benefits the environment by purifying the surrounding air as it travels. The design of our vehicle emphasises both a visionary and an environmentally clean impression through the aesthetic appearance and its sustainable functionality.

Client / Manufacturer

Hyundai Rotem

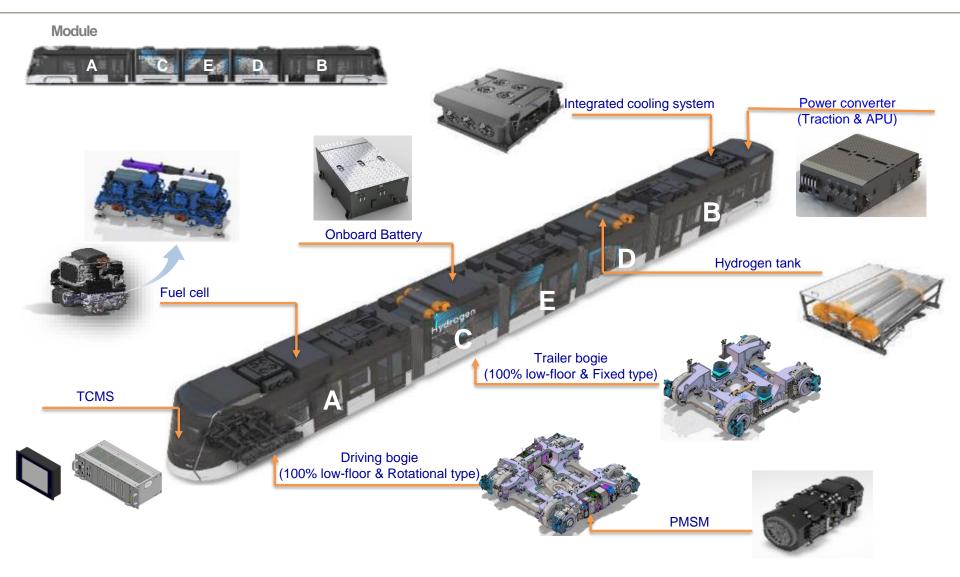
Uiwang-si, KR


Hyundai Rotem


Uiwang-si, KR

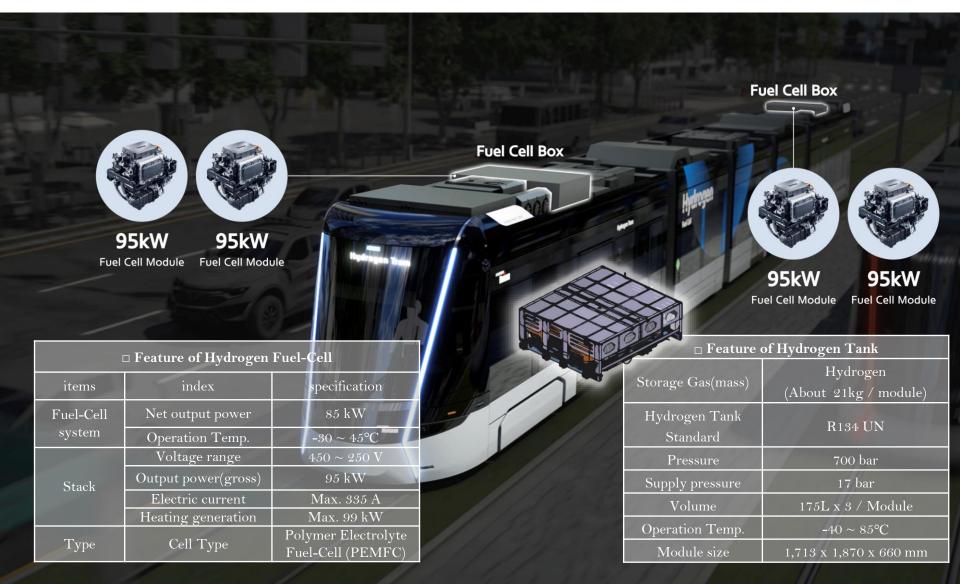
Vanita Astesson (Wener Absilinger | Marite Andeweg | Jan-Erit Basis | Geren Bagatan | Lantas Baneto Adad | Chitatiane Basis bast | Robert Best (Stefan Behinket | Oliver Berger (Imma Bermitchz | Romy Bibel (Sitte Boshat (Sittyle Bornefett) Mishael Banicks) Philipp Bree | Davie Brown | Maite Budde | Sean Carney | Bre Castro | Shittuar Other | Liu Cher | Edward Others | Cot Chor | Patricto Cricerio II Paul Cohen (Boulle Coure Ren I Min Cullin I babelle Cabilbox, Lidshörn I China dei Pottib I Ceder Coming a Alpoditu (Andreas Obferbash (Bern Coracles (Janed Brans (Mars Fabra) Ribderite Faith (Cethy Fib Ritz Frent bi (Obuda Riedisk | Nitias Galbi | Maruel Cattinger | Katja Gerhards | Oliver Gest heizzer | Tilla Goldberg | Jacques Gasinsen | Carlo Gassell | Awed Guderbis | Iwas Härgg | | Olivis Herris | Jos Herrestreckt | Jose Herrest | Torr Hild | Huldel Hualis (Stephan Hithre (Tim Hulford (Uzh Hwars) (Minou Beda (Masazu milina) (Charin Jeon (Herrit Jeonesea) (Pertilib Johansson (Charles Johnson (Ann Kaltsstirntit (Hyur-Ah Kim (ScoVeor Kim (Vorg-Ju Kim) Jainet King tom (Pett: Kiting müller | Ton I Koberling | Bitigit Kolt Hanss | Petter I Kolten | Karen Korellis Reuther | Heat Kops te | Attas Koya ma | Kaisten Küber (Peter Kütz (John W. Lam) Mikihael Lanz (Marib Leinvool) kiinnahis Li (Littan Liu (Sam Livinsstone (Johnson Loogis (Katris Mense Hills Holser Moorgans Willia Mortews (Carls Montes) Historia Missien (Mitsieller (Mit Askim Magorij Skina Milimas Wist show ji Anno-Julia Mowitz ti ji Kabin Goding ji Mibo John Otto (Thomas Paulen ji Andy Payne j Ratina Pornto i Rosa Rela i Asa Relafo i Guto Recuesa i Andreas Res i Andreas Rotzier i Robert Andrea i Errora Asadtesa i Calster Scheller (Johannes Schell (Taile Schmitt Rumb) (Asia Schotze (Annete Short (Star Stoil)) (Value: Sobmon) Boschur Gord i BAus Gorde i Betrickt Greech (Stille Wei Seen Str. Literari Street | Eliche Tell (Sote Tible In Hartis Torrell) Mita a Turres ti (Lauren Tutssell | Mitjam van Collie | Rabb Verdell | Wofgang Wagner | Mit Wang | Root Wang | Rabbs Wapper | Matthew Weaver | Swes Web text | Justa Wesser | Magazete Wibs | Mos (Wolf | Satosh (Yosh Bourn)

Mechanism of Hydrogen Tram


※ Air purification mechanism

 Using 3 step filter for the supply of oxygen in air

Condition Category	Initial Maneuver	Accelerating	Constant Speed	Decelerating
Driving Pattern	Low-load Driving	High-load Driving	Normal-load Driving	Regenerative Braking
Power Source	Fuel Cell (Charging OESS)	Fuel Cell + OESS	Fuel Cell (Charging OESS)	Charging OESS



Details (Tram Configuration)

Details (Specification)

3. Hydrogen Mobility Roadmap

Hydrogen Train Full Line-up

❖ Hyundai Rotem provides a full line-up of hydrogen train through phased development

Category	Phase I	Phase II	Phase III
Timeline	2018 ~ 2023	~2024 (design)	2024 ~
Technology	Utilizing HMC Automobile FCs	Utilizing components developed for rolling stock	Utilizing special components developed exclusively for rolling stock
Tasks	Verification of Performance and safety	Improving power density & cooling Increasing hydrogen load capacity	Increasing hydrogen load capacity
Fuel Cell	380 kW (95 kW X 4)	440 kW (110 kW X 2/car)	3 MW(Total power)
Max Speed	70km/h	> 100km/h	160km/h
Running Distance	150km	> 300km	> 300 ~ 1,000km
	Urban Trams	Multiple Units	Locomotives (HST : 2030~)
Rolling Stock Application			K PANI

4. Hydrogen Infrastructure

Overall Infrastructure

Storage

Liquid Hydrogen Plant (under development)

Re-fueling system

Tube Trailer Filling Station

On/Off-site Refueling station

Production

Reformer (300Nm/h)

Mobile Refueling Station

Dispenser

Proven Total Solution Provider

Proven Technology Aesthetic Design

Total Solution

Project Management

- Stability-proven Hydrogen Fuel cell technology by Hyundai Motor
- Joint Development with Government

❖ If Design Award 2023 (World top 3 Design Award)

- Full package supply (Tram & Reformer)
- ❖ System Integration & Integrated system guarantee
- Customized & Optimized Solution for Client

(Operation & Maintenance)

Full of experience & management capability

Project	Qty	Velocity	Delivery
Turkey IZMIR	38	50km/h	Completed
Turkey ANTALYA	18	70km/h	Completed
Poland WARSAW	123	70km/h	On-going
Canada Edmonton	40	80km	On-going

Creating Innovation for a Better Future

archive.today

Salvo de https://www.hyundai-rotem.co.kr/Eng/Business/Rail/Railroad/Product/rail1_p

13 Apr 2013 14:01:42 UTC

captura de webpages Todos os snapshots do domínio www.hyundai-rotem.co.kr

Linkado de ru.wikipedia.org » <u>HRCS2</u> uk.wikipedia.org » <u>HRCS2</u>

Webpage

busca

report errar or denunciar abuso

HYUNDAI ROTEM

The Ukraine's express electric rail car is operated on the circular line that connects the 4 cities that hosted Euro 2012. This new train features aerodynamic for winter temperatures of -40C.

▶ Project	Ukraine express EMUs
• Authority	Ukraine Railways(Hyundai Corp)
Number of vehicles	90cars (9cars X 10train sets)
■ Contract date	2010.12.16
Delivery date	'12. 5. 31 ~ '12. 10. 07

- Specifications

 Maximum design speed
- Formation
- Dimensions (L x W x H)
- Gauge
- Trainset
- Electric Systems / Power Supply
- The number of seats
- Passenger capacity
- Carbody
- Doors
- Air Conditioner
- Brake / Coupler
- Bogie
- Main electrical equipment
- Signal
- Applied standard

- 176km/h
- 9 cars per 1 train set
- 21,700 x 3,500 x 4,274(mm)
- Wide gauge (1,520mm)
- Mc1+T+MB+M2+T+M1+M2+T+Mc2
- DC 3kV & AC 25kV
- 579
- 1,162
- Stainless Steel
- Electric Plug-in doors
- Roof Mounted A/C, 40,095kcal/h/car
- A Microprocessor based electro-pneumatic brake
- Bolsterless, out-board type
- Induction motor / VVVF inverter (Hyundai Rotem's
- electrical equipment)
- ATC(ALSN)
- | UIC/EN/IEC/ISO/GOST Standards

CLOSE X